Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/25/2015</td>
<td>Version 2.0</td>
</tr>
</tbody>
</table>
As of October 30, 2014, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0.

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, noninfringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI), I²C TRADEMARK OF PHILLIPS SEMICONDUCTOR. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL TERMS.
Contents

1 Summary .. 1
2 Reference Documents .. 1
 2.1 Applicable Documents ... 1
 2.2 Order of Preference ... 2
3 Operating System and Boot Requirements ... 2
4 Performance ... 2
 4.1 Bandwidth & Throughput .. 3
 4.2 Latency ... 3
 4.3 No I/O Throttling to Reduce Wear ... 4
5 Power ... 4
 5.1 NVMe Drives .. 4
 5.2 AHCI Drives .. 4
6 Thermal & Mechanical .. 5
 6.1 Thermal .. 5
 6.2 Mechanical ... 6
7 Endurance .. 7
8 S.M.A.R.T. Attributes ... 7
 8.1 NVMe .. 10
 8.2 AHCI .. 10
9 Commands .. 10
 9.1 Firmware Update .. 10
 9.2 Disk Reconditioning Tool & Crypto-Erase ... 10
 9.3 Debugging Logs ... 11
10 Unplanned Power Loss .. 11
 10.1 Drives with Volatile Write Cache .. 11
 10.2 Drives with Non-Volatile Write Cache .. 11
 10.2.1 System-Assisted NV Write Cache .. 12
 10.2.2 Fast Flushing ... 12
11 Data Security ... 12
Table of Figures

Figure 1: Air Property Pictorial ... 5
Figure 2: Memory Card Environmental Requirement 6
Table of Tables

Table 1: Device Summary .. 1
Table 2: Reference Documents .. 2
Table 3: Throughput Targets ... 3
Table 4: Latency Targets .. 3
Table 5: Additional SMART Attributes .. 9
1 Summary

This specification, *Open CloudServer Solid State Drive, OCS SSD*, describes the low-cost, high-performance flash-based storage devices deployed first in the Open CloudServer OCS Blade V2 specification. The OCS Blade V2 supports four PCI-Express riser cards and eight Open CloudServer Solid State Drive M.2 modules. The Table 1 briefly describes the required features.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>M.2</td>
</tr>
<tr>
<td>Dimensions</td>
<td>22mm x 110mm (preferred)</td>
</tr>
<tr>
<td>Hardware Protocol</td>
<td>PCIe Generation 3, x4 (preferred)</td>
</tr>
<tr>
<td>Software Protocol</td>
<td>NVMe 1.1a (preferred), or AHCI over PCIe</td>
</tr>
<tr>
<td>Capacity</td>
<td>480GB</td>
</tr>
<tr>
<td>Endurance</td>
<td>3 DWPD over 3 years, or 0.5 DWPD over 3 years</td>
</tr>
<tr>
<td>Default Maximum Power</td>
<td>6W RMS over 100µs</td>
</tr>
<tr>
<td>Unpowered Retention</td>
<td>1 week – 1 month</td>
</tr>
<tr>
<td>Life (MTTF/AFR)</td>
<td>1.5M hrs. / 0.5% (JEDEC Specification)</td>
</tr>
<tr>
<td>Ambient Operating Temp</td>
<td>0°C – 70 °C</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>100%</td>
</tr>
<tr>
<td>Sector Size</td>
<td>512 Bytes</td>
</tr>
</tbody>
</table>

1 GB = 1,000,000,000 Bytes

2 Reference Documents

This section lists the applicable reference documents and defines the order of preference.

2.1 Applicable Documents

Table 2 lists additional specifications to which the OCS SSD adheres.
Table 2: Reference Documents

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.2</td>
<td>“PCI Express M.2 Specification” Revision 0.7a, version 1.0. PCI Express, 2013.</td>
</tr>
</tbody>
</table>

2.2 Order of Preference

In the event of a conflict between this specification and references cited herein, this specification shall take precedence.

3 Operating System and Boot Requirements

The OCS SSD must support the following requirements.

- As a boot drive, the drive must be support 64-bit Windows: WinPE and Windows Server 2012 R2.
- As a non-boot drive, the drive must be present in UEFI/BIOS.
- Trimmed addresses must provide the performance and reliability benefits of additional OP.

4 Performance

The drive must meet the performance targets with these assumptions:

- Entropy of all workloads is 100% (uncompressible)
- Active range is 100%
- Maximum power draw as specified
• Operations are aligned to 4kB address boundaries
• Performance targets include overheads from NTFS

The vendor must provide a performance test report as defined by the SNIA Solid State Storage Performance Test Specification (PTSE).

4.1 Bandwidth & Throughput

The drive must meet or exceed the 6W performance targets list below.

Table 3: Throughput Targets

<table>
<thead>
<tr>
<th>Metric</th>
<th>6W Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential Read (MB/s)*</td>
<td>1600</td>
</tr>
<tr>
<td>Sequential Write (MB/s)*</td>
<td>750</td>
</tr>
<tr>
<td>Random Read (4kB IOPS)</td>
<td>70k</td>
</tr>
<tr>
<td>Random Write (4kB IOPS)</td>
<td>20k</td>
</tr>
<tr>
<td>Random Read/Write Mix (70/30 4kB IOPS)</td>
<td>40k</td>
</tr>
</tbody>
</table>

*MB = 10^6 Bytes

4.2 Latency

Random read latency must match or beat the distribution listed below under the following test conditions.

• Queue Depth = 1
• Drive is trimmed then written sequentially with 2MB accesses
• Drive is near End-of-Life

Table 4: Latency Targets

<table>
<thead>
<tr>
<th>Metric</th>
<th>4kB (µs)</th>
<th>8kB (µs)</th>
<th>64kB (µs)</th>
<th>Operations Needed in Test*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>240</td>
<td>250</td>
<td>450</td>
<td>--</td>
</tr>
<tr>
<td>99 %</td>
<td>300</td>
<td>360</td>
<td>770</td>
<td>>100</td>
</tr>
<tr>
<td>99.9 %</td>
<td>400</td>
<td>380</td>
<td>1,000</td>
<td>>1,000</td>
</tr>
<tr>
<td>99.99 %</td>
<td>500</td>
<td>550</td>
<td>3,000</td>
<td>>10,000</td>
</tr>
<tr>
<td>99.999 %</td>
<td>1,000</td>
<td>2,000</td>
<td>3,500</td>
<td>>1e5</td>
</tr>
<tr>
<td>99.9999 %</td>
<td>3,000</td>
<td>4,000</td>
<td>5,000</td>
<td>>1e6</td>
</tr>
<tr>
<td>99.99999 %</td>
<td>5,000</td>
<td>6,000</td>
<td>8,000</td>
<td>>1e7</td>
</tr>
<tr>
<td>99.999999 %</td>
<td>7,000</td>
<td>8,000</td>
<td>10,000</td>
<td>>1e8</td>
</tr>
<tr>
<td>99.9999999 %</td>
<td>9,000</td>
<td>10,000</td>
<td>15,000</td>
<td>>1e9</td>
</tr>
<tr>
<td>Maximum Timeout</td>
<td>11,000</td>
<td>12,000</td>
<td>20,000</td>
<td>--</td>
</tr>
</tbody>
</table>

*The test must apply the minimum number of operations listed in the right-most column.
4.3 No I/O Throttling to Reduce Wear

All SSD solutions are to provide performance consistent with the capabilities of the flash and controller. The drive:

- Must not throttle the performance for the purpose of distributing wear on the flash over time
- Must continue to allow writes as long as possible after the media wear indicator reaches 100%

5 Power

The drive must support dynamic switching between power states in which the host can perform I/O.

The drive must report at least one power state for each level:

- Required: Maximum of 6W
- Optional: Maximum of 8W and 10W

Some blade configurations may leverage the optional power states for higher performance, but there is no guarantee.

5.1 NVMe Drives

NVMe drives must allow switching between Operational Power States through the Get Features and Set Features command with the Power Management feature identifier (see Figure 92 in Section 5.12.1.2 in the NVMe 1.1a specification).

The supported operational power states shall be returned from the Get Features command with the Power Management feature identifier. The Set Features command with Power Management feature identifier shall switch between the different supported operational power states.

If the drive supports the Autonomous Power State Transition feature, it shall disable Autonomous Power State Transition if the host sets Autonomous Power State Transition Enable (APSTE) to 0 in the Autonomous Power State Transition Set Feature command.

NVMe drives must support Get and Set Features command with Power Management feature identifier, and the Autonomous Power State Transition feature as described above.

5.2 AHCI Drives

The maximum power of AHCI drives will be set at server configuration time through Advanced Power Management. The vendor must report which APM levels the drive has mapped to the power states defined above.
AHCI drives must report which APM levels map to which power levels.

6 Thermal & Mechanical

6.1 Thermal

The SSD must thermally protect itself from overheating.

The drive must signal the host when its temperature is too high through a Temperature Async Event Notification (for NVMe) or Device Statistics Notification (DSN) (for AHCI).

The environment in which the memory cards are expected to operate may vary from position to position within the server. To best represent this environment, the air temperature and speed properties are defined as measured in Figure 1.
The guidelines for the expected environment are shown in Figure 2. The theoretical full performance line represents the worst case conditions in which the memory card is expected to operate at full performance. The memory cards are expected to operate, but allowed to do so at a reduced performance in the conditions between the full performance line and the throttled performance line.

The drive must operate in the thermal environment as shown in Figure 2.

![Memory Card Environmental Conditions](image)

Figure 2: Memory Card Environmental Requirement

6.2 Mechanical

This section outlines the mechanical requirements.

- The connector on the M.2 card must use 30 micro-inches of gold plating.
- The server can mechanically support module lengths of 60mm, 80mm or 110mm and uses a Socket 3 connector.
- The card shall conform to the geometry provided by the PCI Express M.2 Specification, section 2.3.4.4, card type 22110.

Note: Including capacitors for the power safe feature has proven difficult with the current height specification. The OCS V2 blade can accommodate a top-side component height of 3.0 mm, as shown in Figure 3. Vendors are granted an exception for this specification if 3.0 mm height is met. Vendors are encouraged to meet the M.2 specification to ensure compatibility with future OCS systems and non-OCS systems.

![Figure 3: Top-Side Mechanical Exception](image)

7 Endurance

Endurance is measured against the following reasonable worst-case workload:

- 4kB accesses aligned to 4kB boundaries
- Random pattern of addresses
- 100% active range
- 100% full drive
- 0% compressible data

Drives must meet the following endurance requirements

- High endurance drives must be able to sustain 3 drive writes per day (DWPD) over 3 years
- Low endurance drives must be able to sustain 0.5 drive writes per day (DWPD) over 3 years

8 S.M.A.R.T. Attributes

Consistent access to SMART attributes across all drives is required. The NVMe specification provides this (for NVMe drives) through log pages. AHCI drives leverage the ACS3 log pages.
- SMART commands may not block IO for more than 30ms.
- SMART values will be updated before each read so that the value reported is the most current.
- The vendor-specific log page should be 512 bytes and define the following attributes:
Table 5: Additional SMART Attributes

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Attribute Name</th>
<th>Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:0</td>
<td>Medium Units Written</td>
<td>Contains the number of 512 byte data units the medium has been written; this value includes metadata written to the non-out-of-band area in the medium. This value is reported in thousands (i.e., a value of 1 corresponds to 1000 units of 512 bytes written) and is rounded up. When the LBA size is a value other than 512 bytes, the controller shall convert the amount of data written to 512 byte units.</td>
</tr>
<tr>
<td>16</td>
<td>Capacitor Health✓</td>
<td>An indicator of the health of the capacitors (if present). This shall be expressed as a percentage of charge the capacitor is able to hold.</td>
</tr>
<tr>
<td>17</td>
<td>Supported Features</td>
<td>Bit 0: 1 indicates a super capacitor exists. Bits 1-7: Reserved</td>
</tr>
<tr>
<td>32:18</td>
<td>Temperature Throttling</td>
<td>Tracks how much performance is throttled to prevent overheating. The attribute reports the number of dies multiplied by how long the dies are turned off (in minutes). Resets when the drive power cycles. Saturates and does not wrap. *</td>
</tr>
<tr>
<td>33</td>
<td>Power Consumption (optional)</td>
<td>Current power consumption of NAND, Controller and other SSD components in Watts. If the SSD does not have a mechanism to measure power, it should return 255.</td>
</tr>
<tr>
<td>34</td>
<td>Wear Range Delta</td>
<td>Returns the difference between the percentage of used endurance of the most-worn block and the least worn block: (% used of most-worn) – (% used of least-worn)</td>
</tr>
<tr>
<td>35</td>
<td>Unaligned I/O</td>
<td>Count of the number of unaligned IOs performed by the host. This counter should be resettable and should not wrap.</td>
</tr>
<tr>
<td>33:36</td>
<td>Mapped LBAs</td>
<td>Number of LBAs the map is tracking</td>
</tr>
<tr>
<td>511:37</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

*This requirement is optional if the vendor provides compelling information in the datasheet about the high reliability of the capacitors used in the drive.
8.1 NVMe
NVMe drives must support the following attributes and logging

- Attributes listed in section 5.10.1.2 of the NVMe specification.
- Vendor-specific log page 0xC0, as defined in Table 5.

8.2 AHCI
AHCI drives must support the following Device Statistics log pages (defined in ACS3) through the Get Log command

- General Statistics log page
- Solid State Device Statistics log page
- General Error Statistics log page
- Transport Statistics log page
- Temperature Statistics log page

AHCI drives must support the vendor-specific log page 0xa0, as defined in Table 5.

9 Commands
The drive must support the commands specified in the NVMe 1.1a and SATA specifications, and must also operate with the Microsoft drivers included with Windows since version 8.1 / Windows server 2012 R2.

9.1 Firmware Update
NVMe drives must implement firmware updates according to the process defined in the NVMe specification. The device must support a minimum of 2 slots for firmware update and may support up to 7.

AHCI drives must use the “download microcode” command and its sub-commands (as defined in ACS3): 3 – Segmented download and 7 – complete download.

9.2 Disk Reconditioning Tool & Crypto-Erase
The following commands are necessary to return the OCS SSD as close as possible to Fresh-Out-of-Box (FOB) shipping state. FOB includes resetting all FTL state relating to block-mapping tables and garbage collection logic and erase all stale or invalid data from the flash.
The drive must encrypt all data, and the secure erase command must operate quickly by simply erasing the key. NVMe supports secure erase setting of Cryptographic Erase (see section 5.13 Figure 111 for more info).

- NVMe drives must return to FOB state after combination of Format NVM and Crypto-erase
- AHCI drives must support the Sanitize Device feature set and the CRYPTO SCRAMBLE EXT command.

9.3 Debugging Logs

The drive must provide access to its debugging logs. The logs should contain enough information to determine root cause. Their format will be vendor specific with the vendor providing a tool to consume the logs.

- AHCI drives must support the General Purpose Logging (GPL) feature set. The log is retrieved through the Current Device Internal Status Data log page (0x24)
- NVMe drives will use a Microsoft-specific log to access debugging logs.

10 Unplanned Power Loss

This section details requirements for behavior of write cache due to unplanned power loss.

- High endurance drives must have a non-volatile write cache
- Low endurance drives may have a volatile write cache

10.1 Drives with Volatile Write Cache

A drive with a volatile write cache is one whose data, in DRAM and/or SRAM, is not guaranteed to be written to non-volatile media on loss of power.

10.2 Drives with Non-Volatile Write Cache

The following types of media are defined as non-volatile caches:

- volatile media (such as DRAM and SRAM) protected by capacitance
- non-volatile media
- drives supporting the PCIe reset Non-Volatile assist signal

If the drive uses volatile media and capacitor health is compromised, the cache is no longer considered nonvolatile, and the drive must disable the volatile write cache and alert the host.
• NVME drives must alert the host to failed capacitors through the Device Reliability Async event.
• AHCI drives must use the Device Statistics Notification from the Device Statistics log page.

10.2.1 System-Assisted NV Write Cache

In this scenario, drives must flush all data to non-volatile storage within 1s of the PCIe reset (PERST) signal. System voltage will be valid for at least 1s after PERST is asserted. After receiving the PERST signal, the SSD must not drive any pins.

With this sequence of signals, the drive must not lose or corrupt any user data or metadata, and should not require self-contained hold-up capacitance. Once the whole-system solution is in place, we will consider drives supporting this behavior for PCIe reset as having a non-volatile write cache.

10.2.2 Fast Flushing

The performance of drives with non-volatile write caches should not be noticeably degraded by flush, and the PLP-backed cache(s) should enable fast performance.

• FUA – forced unit access (for AHCI only) should be fast
• Flush Cache should not degrade performance
• SET FEATURE write-cache disable

The drive should still flush data to flash when the drive has been idle for at least 20ms or power has failed. The host must be able to dynamically disable these performance optimizations.

11 Data Security

The drive must implement the subset of TCG protocol methods described in Microsoft’s Encrypted Hard Drive Device Guide (called the “eDrive” standard). Microsoft has published the requirements on MSDN:

Drives must follow the eDrive security standard.