Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>6/9/2015</td>
<td>Tom Anschutz</td>
<td>Initial Release</td>
</tr>
<tr>
<td>.02</td>
<td>8/28/2015</td>
<td>Tom Anschutz</td>
<td>First set of Updates based on initial feedback.</td>
</tr>
<tr>
<td>.03</td>
<td>9/10/2015</td>
<td>Randy Clark</td>
<td>Updated architecture</td>
</tr>
<tr>
<td>.1</td>
<td>9/11/2015</td>
<td>Tom Anschutz</td>
<td>First OCP Draft</td>
</tr>
</tbody>
</table>
Licenses

All semiconductor devices that may be referred to in this specification, or required to manufacture products described in this specification, will be considered referenced only, and no intellectual property rights embodied in or covering such semiconductor devices shall be licensed as a result of this specification or such references. Notwithstanding anything to the contrary in the CLA, the licenses set forth therein do not apply to the intellectual property rights included in or related to the semi-conductor devices identifies in the specification. These references include without limitation the reference to devices listed below. For clarity, no patent claim that reads on such semiconductor devices will be considered a “Granted Claim” under the applicable Contributor License Agreement for this specification.

<table>
<thead>
<tr>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As of June 9, 2015, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0:

AT&T.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." No support of any kind will be provided by the contributors. The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose, completeness or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Scope
This document outlines the technical specifications for the AT&T Open GPON Line Card submitted to the Open Compute Foundation.

Overview
This document describes the technical specifications of the Open GPON Line Card designed by AT&T. The term line card is used in a virtual sense. The system is a physical 1RU box (pizzabox) that is self-contained, and not part of a physical chassis system. However, this physical box is considered a line card in a virtual, scale-out system where such line cards are attached to a fabric (e.g. leaf and spine) that interconnects them to create large scale-out virtual network elements. The Open GPON Line Card is a cost optimized access design focused on NFV Infrastructure deployments which support 2.5Gb GPON access connectivity and provide 40Gb uplinks to the ToR or Spine layer of the network. The switch supports forty eight SFP ports that each operate at 2.5Gb downstream (egress) and 1.25Gb upstream (ingress) six QSFP+ ports that operate as four 10Gb ports each. These six physical ports are arranged in a 1-1 active-standby arrangement, where each lane in a primary port has a corresponding backup in a failover port. Other applications are also envisioned and described below.

The Open GPON Line Card is a PHY-Less design with the SFP connections directly attaching to the XAUI and SERDES interfaces of the PMC-Sierra PAS5211 GPON SoC for OLT. This silicon provides low cost, latency, and power and includes a high level of component integration to reduce system complexity. The Open GPON Line Card supports traditional features found in Top of Rack switches such as:

- Redundant field replaceable power supply and fan units
- A variety of supported power supply voltages
- Support for “Front to Back” or “Back to Front” air flow direction
- A 1RU design that supports standard 19” rack deployments as well as standard 21” Open Rack and also 23” telco rack deployments.

Applications of this design include some specific variations and considerations in order to address a broader market and set of collaborators for this project. Specifically, the set of variations considered include:

- The simplified and cost-optimized line card application for a virtualized scale-out OLT.
- A small, simplified, self-contained traditional OLT device that can be used in non-NFVI environments.
- The ability to manage and control the device using a separate out-of-band port.

1 This type of system is described in ETSI NFV architecture, where it comprises the Infrastructure that supports Network Functions Virtualization – often called NFVI. Additionally, the open software beyond that described in this specification is collected and distributed as one of the use cases for the ONS2015 - CORD project at ON.Labs. See https://wiki.onosproject.org/display/ONOS/ONOS+Use+Cases
• The ability to synchronize and distribute timing from upstream toward ONUs.

The 4 variations are not mutually exclusive, and are now described in more detail.

Virtual OLT

The first application embodies the AT&T Open GPON Line Card. In this application the device is envisioned to be part of a NFVI deployment, where compute, storage, and other cloud infrastructure are part of the environment. In this environment, the Open GPON Line Card connects to ToR devices that aggregate traffic and also provide transport for management and control. In other words, the management and signaling use the same physical interfaces as does the user traffic. Moreover, the low-level management processes that might be typically performed by a small processor on a GPON line card are performed outside the box, in a separate commodity server. This allows managing many line cards from a small number of commodity servers, and conserves compute and storage in the same way that performing aggregation in the ToR switch conserves aggregation typically performed on line cards to interface several GPON phy chips to a backplane or fabric. The arrangement also allows for an overall system design where there is no single point of failure that affects the entire Open GPON Line Card and allows application of cloud application architecture to software that was previously hosted on embedded processors. This system is described as a disaggregated or virtual OLT because the various software and hardware components that were once integrated into a single physical device have been separated and supported in a distributed way across NFV infrastructure. By doing this it becomes more likely to re-use components among disparate networking functions and to independently scale resources and investments according the specific application of the technology.

Figure 1 - Virtual OLT

Figure 1 shows the disaggregation of a typical OLT and the mapping of its functions to NFV infrastructure.
The backplane or fabric of the OLT is mapped to the fabric of NFVI (ToR and EoR / leaf & spine switches). The interfaces to the fabric (what were card edge connectors) become simple Ethernet interfaces. The control and management functions are embodied in SDN control and Orchestration with a software stack that will be described shortly. Processing and configuration are mapped to compute and storage in NFVI. The figure shows that almost all the components in an OLT, those to the left of the dashed line, can be mapped to standard high-volume (HV) components found in NFVI. The exception is in the GPON Phy chips. Those are not typically found in NFVI and those are what this specification describes.

In the Virtual OLT, the application of the AT&T Open GPON Line Card is to facilitate attaching GPON phy chips to the fabric of NFVI – as shown in Figure 2.

![Figure 2 - Typical application of Open GPON Line Card](image)

Figure 2 shows the Open GPON Line Card attached to typical ToR (Leaf) switches in the lower left corner. Shown prominently at the top are processes that are run inside the compute VNFs at point 1 and 2. These processes provide the management and control plane functions that manage and control the overall system including the GPON chips within the Open GPON Line Card.

The software used to support this system is partly shown in Figure 3. At the lowest level of the figure we find firmware and hardware drivers that are part of the software loaded and run on the PASS211 SoC chip. That software is pushed to the chip and then subsequently configured and managed through a matching low-level API and OMCI Stack which is run on a commodity server. These two pieces are colored blue because they are proprietary and specific to the PASS211, and would need to be replaced to support other chips and phy technologies.

The next layer up is shown in purple and represents open source software. The lowest layer of this software consumes OLT API calls and OMCI signaling and creates a homogenized abstraction of an OpenFlow controlled OLT – largely patterned after an Ethernet switch. This abstraction is then plugged into the southbound side of an OpenFlow agent and configuration management block, and that software comprises all the code to generically manage and control the Open GPON Line Card. Consuming OpenFlow and NetConf from the Open GPON Line Card and from other elements, the next layer in the software stack is an OpenFlow Controller and configuration. These might be combined or separate software. Finally, in green, we see the applications that embody the control plane and management applications for a number of access technologies and instances of each.
To support this application, the Open GPON Line Card minimizes the number of components populated on the system board and leverages external, scalable, available and re-usable components instead. This is the most basic and economic instantiation of this design. Management is performed through external processes and is communicated through a virtual LAN that isolates that traffic from customer traffic. Specifically, there is no out of band management LAN, no onboard processor, no onboard storage, and no provision to synchronize timing across the platform. The design does still support a variety of power supply options, airflow options, and a baseboard management controller (BMC) to manage these resources.

Mini OLT

The next application of this technology moves to the opposite extreme. In this case the Open GPON Line Card is extended with Processing, Storage, and an internal management LAN to facilitate the device becoming a stand-alone OLT device. From a hardware perspective, the board is populated in addition to the components of the virtual OLT with an Intel CPU and RAM, Flash storage, and a 16 Port Ethernet switch. The latter interconnects the management and control paths among the CPU, 12 PASS211 SoCs, BMC and an external management port. This application is useful in one-off applications, in lab and development environments, and in places where NFVI isn’t available or desired. The software stack for this device can be identical to that used in the virtual OLT: where all the software shown in Figure 3 is hosted on the onboard CPU. However, it is also possible to optimize. For example, control and management applications could be written directly to PMC APIs. Obviously, hybrid approaches are also possible by making other software placement choices, and other software not shown above could also be run on the CPU. Note however, that this design has several single points of failure, and is not as robust from the perspective of availability as the virtual OLT.

Separate Management LAN

The next application of this technology moves toward the center. In this case the Open GPON Line Card is extended only with an internal management LAN, and depopulates processing and storage. From a hardware perspective, the board is populated with an additional 16 Port Ethernet switch. The latter interconnects the management and control paths among the 12 PASS211 SoCs, BMC, and an external management port. This might be a desirable option for infrastructure practices where management is done on separate physical infrastructure for economic or security reasons. However, like before, the
management LAN is a single point of failure, and this approach is not as robust as the virtual OLT. Note also that the control plane (OpenFlow) uses the management plane, and that a failure of this LAN is likely to affect customer service. Said another way, the out of band management plane might be desirable from, say, a security perspective, but it changes the largest single failure scope from 4 PONs to the entire box. That is, using inband management and control reduces the largest single failure domain on the box to a single GPON SoC and uplink which supports 4 PON ports.

Timing

The next application covers a case for timing distribution. This application is largely independent of the previous ones. That is, regardless of whether there is an onboard management LAN or processor and storage, there are situations when distributing timing is desired. The typical case for including timing distribution is where GPON is used to provide backhaul for cell sites, but this is not a universal requirement for using GPON for cell site backhaul.

In this application a Synchronization Management Unit is added to the system to facilitate SyncE and IEEE 1588 timing paths.

This overall design supports all the aforementioned use cases, and allows the omission or depopulation of various components as manufacturing options to source the device for the various use cases.
Physical Overview

Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>20.47</td>
<td>520</td>
</tr>
<tr>
<td>Width</td>
<td>17.08</td>
<td>433.8</td>
</tr>
<tr>
<td>Height</td>
<td>1.73</td>
<td>44</td>
</tr>
</tbody>
</table>

Note: Width does not include mounting ears. Depth does not include PSU handles.
Top View
The top view of the Open GPON Line Card shows the PCBs and associated components in the system.

1. Hot swappable power supply #1
2. Hot swappable fan modules
3. Hot swappable power supply #2
4. Optional CPU system
5. 12 GPON devices – PAS5211
Front View

1. Upper SFP ports LED
2. SFP ports
3. Lower SFP ports LED
4. Upper QSFP+ ports LED
5. QSFP+ ports
6. Lower QSFP+ ports LED
7. System and PSU LED indicators
8. Reset button (used with CPU Option)

The front panel view of the Open GPON Line Card includes the following key components:

- Forty Eight SFP Ports
 - Capable of operating at 2.5Gb GPON speeds with standard GPON OLT SFP modules
- Six QSFP+ ports
 - Operating as 4x10Gb Ethernet channels with standard QSFP+ modules or 10Gb Ethernet via QSFP to SFP+ break out cables (4x10Gb)
- System LEDs
- Reset switch
Front Panel LED Definitions

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Description</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSU1</td>
<td>Led to indicate status of Power Supply 1</td>
<td>Green - Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber - Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off – No Power</td>
</tr>
<tr>
<td>PSU2</td>
<td>Led to indicate status of Power Supply 1</td>
<td>Green - Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber - Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off – No Power</td>
</tr>
<tr>
<td>Diag</td>
<td>LED to indicate system diagnostic test results</td>
<td>Green – Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber – Fault detected</td>
</tr>
<tr>
<td>FAN</td>
<td>LED to indicate the status of the system fans</td>
<td>Green – All fans operational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber – One or more fan fault</td>
</tr>
<tr>
<td>LOC</td>
<td>LED to indicate Location of switch in Data Center</td>
<td>Amber Flashing – Set by management to locate switch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off – Function not active</td>
</tr>
<tr>
<td>SFP LEDS</td>
<td>LED built into SFP cage (one per SFP port) to indicate port status</td>
<td>On Green/Flashing – Port up with active ONTs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing indicates activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On Amber – Port up with no active ONTs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off – No Link/Port down</td>
</tr>
<tr>
<td>QSFP Break out LEDs</td>
<td>Each QSFP+ has four LEDs to indicate status of the individual 10G ports</td>
<td>On Green/Flashing – Individual 10G port has link at 10G. Flashing indicates activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off – No Link</td>
</tr>
<tr>
<td>OOB LED</td>
<td>LED to indicate link status of 10/100/1000 management port</td>
<td>On Green/Flashing - port has link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off – No link</td>
</tr>
</tbody>
</table>
SFP Interface Module support

| 2.5Gb GPON SFP Modules | Standard 2.5Gb SFP modules including but not limited to: |

QSFP+ Interface Module Support

| 40Gb SFP+ Optical Modules | Standard 40Gb QSFP+ modules including but not limited to: 40GBASE-SR4, 40GBASE-LR4, 40GBASE-ER, AOC Cables |
| Direct Attach Copper (DAC) | Standard DAC cables including but not limited to: Passive cable up to 5m, Active cable up to 10m |

Rear View

1. Hot swappable power supply 2
2. Hot swappable fan modules, 3 and 4
3. Out of band management port (Optional)
4. SFP+ Sync-E port (Optional)
5. USB Type A port (Optional)
6. Hot swappable fan modules, 1 and 2
7. Hot swappable power supply 1

The rear view of the Open GPON Line Card includes the following key components:

- Four (3+1) redundant hot swappable fan modules
 - Color coding to indicate airflow direction
- Two redundant hot swappable power supply modules
 - LED per power supply to indicate status
 - Color coding to indicate airflow direction
- Mini USB 2.0 type “A” port
 - Used for optional external storage
- RJ45 10/100/1000 Ethernet management port
 - Connected directly to the BMC and optional system CPU
 - Provides optional Serial over LAN for virtual console
- SFP+ Sync-E port (optional)
Field Replaceable Units

Power Supply Modules
The Open GPON Line Card supports two hot swappable PSUs and needs only one to operate. The PSU form factor is 40mmx74mmx185mm. The system can support different matching PSU types (e.g. AC or DC) which have the same form factor.

460W AC PSU (support forward and reversed airflow)
Delta DPS460KBD (F2B)
Delta DPS460KBE (B2F)
- Input: 100~240VAC, 50/60 Hz
- Output: 12V/460W
- AC/DC efficiency: >88%(20%~100% load@230VAC/50Hz)
- Hot-swap FRU
- Load-sharing, 1+1 Redundancy

550W HVDC PSU (support forward airflow)
Delta DPS550AB6A (F2B)
- Input: 100~240VAC, 50/60 Hz
- Input: 180~300VDC
- Output: 12V/550W
- AC/DC efficiency: >90%(20%~100% load@230VAC/50Hz)
- Hot-swap FRU
- Load-sharing, 1+1 Redundancy

800W -48V DC PSU (support forward and reversed airflow)
Delta DPS800AB5A (F2B)
Delta DPS800AB5* (B2F)
- Input: -40.5~60VDC
- Output: 12V/800W
- AC/DC efficiency: >88%(20%~100% load@-48V)
- Hot-swap FRU
- Load-sharing, 1+1 Redundancy

12V Power Adapter is under development.
Fan Modules
The Open GPON Line Card supports four individual fan modules. Each fan module supports two 40mmx40mmx54mm fans shown below. There are two fan module types, F2B and B2F. Both F2B and B2F fan module use the same fan, Delta, GFC0412DS-DC3Y. The only difference is in assembly.

Pin assignments of the fan module are shown in the following table.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12V</td>
<td>1,2,3,4,17,18,19</td>
<td>12V Power</td>
</tr>
<tr>
<td>GND</td>
<td>6,8,9,13,14,15,16</td>
<td>Ground</td>
</tr>
<tr>
<td>FAN_n_PRESENT</td>
<td>5</td>
<td>Fan module present signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Fan module present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Fan module absent</td>
</tr>
<tr>
<td>FAN_n_F2B</td>
<td>20</td>
<td>Indicate Fan air flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: B2F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: F2B</td>
</tr>
<tr>
<td>FAN_n_TACH</td>
<td>10</td>
<td>The TACH signal of the first fan on the fan module</td>
</tr>
<tr>
<td>FAN_n_PWM</td>
<td>7</td>
<td>The PWM signal of the first fan on the fan module</td>
</tr>
<tr>
<td>FAN_n+5_TACH</td>
<td>11</td>
<td>The TACH signal of the second fan on the fan module</td>
</tr>
<tr>
<td>FAN_n+5_PWM</td>
<td>12</td>
<td>The PWM signal of the second fan on the fan module</td>
</tr>
</tbody>
</table>

Table 1 Fan Module Signals Definition
System Overview:

Main PCB Block Diagram

The block diagram shows a single design which can support the various use cases described previously.

- The BMC provides chassis management, but this function can be delegated to any one of the GPON SOC or the Host CPU.
- All devices share the 100M FE link which can extend externally for optional remote LAN management.
- All the chassis devices are connected through an I2C network such as FANs, PSUs, Thermals, System LEDs
- The I2C switch CPLD provides multi master support, and Chassis Management arbitration.
- Each GPON SOC connects to two 10G PHY for Main and Backup uplink connections.
- Optional CPU can run 3rd party full OLT stack and manage GPON SOCs via FE network.
X86 CPU Module Block Diagram

The Host Module will use standard COM-Express form factor and interface. This will allow a variety of different CPU options to be considered in different performance and price points including Intel Rangeley, Broadwell-DE, or ARM. The COM-Express provides for difference form factors in a compatible mounting strategy which this platform will support.

Typical Host CPU for stand-alone OLT might include Broadwell-DE 6C with 16G RAM and 64G M.2 SSD.

PCB Board Set

The Open GPON Line Card is composed of a single main PCB that contains all the main electronics and connections to front and rear panel connections.

There are two optional PCBs

- An optional COM-E CPU module PCB which provides a Host control processor and associated components
- An optional Timing Module which can extract Sync-E and provide timing to the GPON SOCs

PCB Outlines are not ready for this draft.
Software Support
The AT&T Open GPON Line Card supports a base software package composed of the following components:

BMC support
AMI BMC or OpenBMC

U-Boot (Optional CPU Module)
TBD

ONIE (Optional CPU Module)
ONIE version 2014.08 or greater will be supported

Open Network Linux (Optional CPU Module)
See http://opennetlinux.org/ for latest supported version
Specifications

Power Consumption
The total estimated system power consumption of the AT&T Open GPON Line Card is ~XXX Watts. This is based upon worst case power assumptions for traffic, optics used, and environmental conditions. Typical power consumption is ~XX Watts.

Environmental

- Weight 19.56lbs / 8.8kg
- 0 to 40 Degrees C operating range
- -40 to 40 Degrees C storage temperate range
- Humidity 5% to 95% non-condensing (operational and storage)
- Vibration – IEC 68-2-36, IEC 68-2-6
- Shock – IEC 68-2-29
- Acoustic Noise Level – Under 60dB in 40 degree C
- Altitude - 15,000 (4572 meters) tested operational altitude

Safety

- UL/ Canada
- CB (Issued by TUV/RH)
- China CCC

Electromagnetic Compatibility

- CE
- EN55022 Class A
- EN55024
- EN61000-3-2
- EN61000-3-3
- FCC Title 47, Part 15, Subpart B Class A
- VCCI Class A
- CCC

ROHS

Restriction of Hazardous Substances (6/6)

Compliance with Environmental procedure 020499-00 primarily focused on Restriction of Hazardous Substances (ROHS Directive 2002/95/EC) and Waste and Electrical and Electronic Equipment (WEEE Directive 2002/96/EC)