OCP ORv3 Power
BBU Concept Proposal

Gary Sapia – Director of Comms Power Systems Eng.
gary.sapia@analog.com
Rack Power System Diagram

System Voltage Requirements

PSU Output Voltage:
50V +/-0.25%, Plus 1% Droop
(49.6V – 50.13V)

BBU Voltage:
Input: 49.6V – 50.13V
Output: 48V +/-0.5%,
(47.76V – 48.24V)

Battery Voltage:
36V – 49.2V, 12s6p stackup,
4.1V/cell_max

BusBar Voltage Range:
Operational: 47.76V – 50.13V
Transitional Limits(<1ms): 40V to 60V
Battery Shelf: 15kW (N+1) Redundant Modules

Fan 1 2 3 4 5 6 7 8 9 10 11 12

BBU Charge/Discharge/DC-DC Electronics

Fan 1 2 3 4 5 6 7 8 9 10 11 12

BBU Charge/Discharge/DC-DC Electronics

Fan 1 2 3 4 5 6 7 8 9 10 11 12

BBU Charge/Discharge/DC-DC Electronics

Fan 1 2 3 4 5 6 7 8 9 10 11 12

BBU Charge/Discharge/DC-DC Electronics

Fan 1 2 3 4 5 6 7 8 9 10 11 12

BBU Charge/Discharge/DC-DC Electronics

SMC (Shelf Management Controller)

Analog I-Share Bus
PMBus System Comms

Li-Ion 12s6p Stack

PWR/GND

540mm
BBU Block Description:

Battery

- Lithium Ion 12s6p (72 cell pack)
 - 18650 VTC4 12Ahr
 - 18650 VTC5 15Ahr
- Battery size easily fits mechanical requirements.
- Enables efficient boost architecture
- Enables fast switch over to BBU
- Sized to meet system requirements with adequate margin over lifetime.
- Compatible with high performance automotive battery monitors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spec Requirement</th>
<th>12s – 6p VTC4</th>
<th>12s – 6p VTC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Range Float</td>
<td>48V</td>
<td>49.2V</td>
<td>49.2V</td>
</tr>
<tr>
<td>Voltage 90% @15A</td>
<td></td>
<td>45V</td>
<td>45V</td>
</tr>
<tr>
<td>Cell ESR</td>
<td>12mohm</td>
<td>12mohm</td>
<td>12mohm</td>
</tr>
<tr>
<td>Pack ESR</td>
<td>36mohm</td>
<td>36mohm</td>
<td>36mohm</td>
</tr>
<tr>
<td>Cont. Current Ahr</td>
<td>85A</td>
<td>120amps</td>
<td>135amps</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>12Ahr</td>
<td>15Ahr</td>
</tr>
<tr>
<td>Pack Energy (min required)</td>
<td>305Whr</td>
<td>514Whr</td>
<td>617Whr</td>
</tr>
<tr>
<td>Cycle Life</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>
BBU Block Description:

Busbar side Hot Swap/Reverse Current Controller

- Enables initial battery connection during BBU event
- Controls inrush during BBU Shelf insertion onto a live Busbar
- Controls inrush during BBU Module insertion onto a live Shelf
- Isolates Busbar from BBU Module Fault condition
- Provides Boost output disconnect and short circuit protection
- Reverse current protection, busbar to BBU system, shelf and module
- Provides protection from PSU system over voltage condition
- MOSFET failure detection
- Reverse voltage protection
- Protection for n+1 redundancy
BBU Block Description:

Bidirectional Regulator Controller

- 3.3kW boost voltage generation from battery pack input to busbar output
- Buck voltage charging/current control from busbar to battery pack
- Seamless/instant/no-glitch switchover from buck mode to boost mode and back
- Provides CC/CV control for battery charging
- Adjustable discharge control for battery pack SOH testing
- Accurate analog current sharing between phases and BBU modules/shelves
- Adjustable charging current/voltage control
- Switching MOSFETs short circuit detection, protection and reporting
- Bi-Directional Programmable Current Regulation and Monitoring
- Capable of n-phases for operation in high power applications
BBU Block Description:

Battery Pack Hot Swap and Reverse Current Control

- Enables initial battery connection during BBU event
- Inrush control from battery pack to DC/DC boost input capacitance
- Over current protection
- Battery pack disconnect for redundant power
- Isolates Battery pack from boost and busbar Fault condition
- Provides Battery pack short circuit protection
- MOSFET failure detection
- Reverse voltage protection
- Protection for n+1 redundancy
BBU Block Description:

Battery System Management (BMS) and Voltage/Current Monitor

- Measures Up to 12 Battery Cells in Series
- Low Total Measurement Error over system lifetime
- Manages/Controls/Reports battery functions, i.e. SOC, SOH
- Passive Cell Balancing with Programmable Timer to ease compute time on uController
- Many General Purpose Digital I/O and/or Analog Inputs
 - Temperature, voltage, current or other Sensor Inputs
 - I2C or SPI Communications protocol
- Very low I_q and Supply Current
- Monitor system level failures, open wire, battery failure, degraded measure accuracy, etc.
BBU Block Description:

BBU System uController

- Manages battery charging functions
- Reports BBU information to System Management Controller (SMC)
 - Battery SOH, SOC
 - Electronics Health, diagnostics and fault detection
 - Real Time system Telemetry
- Monitors current sharing between BBU modules
- Manages battery charging and discharging algorithm
BBU Block Description:

BBU System Communications

- Current sharing
- State of Charge
- Battery Status
- Power Metrics
Summary

- Battery pack stack - 12s6P
 - Optimal capacity for back up requirement with margin
 - Fastest switchover time due to max charge voltage exceeding BBU boost voltage
 - 18650 VT4/VT5 cells are commonly used and well tested for this application
 - Many vendors support a 12Cell stack with common BMS products

- Non-isolated Bidirectional DC/DC power architecture
 - Simplicity in power conversion
 - Buck mode charge/Boost mode discharge - fewer MOSFETs, higher reliability
 - Single converter block for simplicity, size, and cost benefit
 - Analog current limit bus offers no droop requirement for improved voltage tolerance

Concerns

- PSU/BBU operational voltages and droop leaves no margin for system tolerances
- Operational voltage ranges don’t include tolerance for load transition variations
- Initial BBU switchover voltage drop dominated by hold up capacitance ESR
 - Need to spec allowable minimum voltage during the switchover
 - Is 40Vmin, <1ms acceptable?