Open CloudServer chassis specification V1.0

Authors:

Mark Shaw, Director of Hardware Engineering, Microsoft
Martin Goldstein, Principal Systems Architect, Microsoft
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/28/2014</td>
<td></td>
<td>Version 1.0</td>
</tr>
</tbody>
</table>
Open Compute Project • Open CloudServer chassis specification

© 2014 Microsoft Corporation.

As of January 28, 2014, the following persons or entities have made this Specification available under the Open Web Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0 Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at http://opencompute.org/licensing/, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED “AS IS.” The contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, noninfringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI), I²C TRADEMARK OF PHILLIPS SEMICONDUCTOR. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL TERMS.
2 Scope

This document provides the technical specifications for the design of the Open CloudServer system chassis.

3 Contents

1 Revision History .. 2
2 Scope .. 4
3 Contents ... 4
4 Overview ... 5
5 Chassis Specification .. 8
 5.1 Chassis Physical Specification .. 8
 5.2 Power Delivery .. 15
 5.3 Tray Specifications ... 17
 5.4 Blade Numbering .. 27
6 Cooling System Specifications ... 27
 6.1 Thermal Design Considerations ... 28
 6.2 Blade Impedance ... 28
 6.3 Fan System Performance ... 32
 6.4 Fan Speed Control ... 34
 6.5 Fan Failure ... 38
 6.6 Thermal Considerations for the Blade ... 39
7 Chassis Power ... 40
8 Operating Environment .. 41
9 Safety and Compliance Documentation ... 41
10 Shock and Vibration Requirements ... 42
11 Appendix: Commonly Used Acronyms .. 46
4 Overview

The Open CloudServer system is a fully integrated rack of servers and IT equipment that is highly optimized and streamlined for large, web-scale deployments. The system is intended to support at least two generations of servers to minimize the detailed, time-consuming, and expensive process of setting up networking and infrastructure in a server deployment.

The system utilizes an off-the-shelf (OTS) commodity rack that is loaded with up to four modular chassis, each with trays, power supplies, power distribution, rack management, system fans, and two side-walls, as shown in Figure 1.

![Figure 1. System overview](image)

Blades are highly configurable, and are usually compute blades or storage “just a bunch of disks” (JBOD) blades.

Figure 2 shows an example of a blade.
Each chassis supports 12 rack unit (U or 1U, each 19" wide and 1.75" tall) trays that house up to 24 individual blades (two blades per tray). Blades can be designed to use the full width of the tray. It is also possible to use multiple rack units to house a single tall blade, with certain restrictions.

Power and management are distributed through the chassis power distribution backplane (PDB). The power distribution backplane attaches vertically to the individual trays on one side and to the power supply unit (PSU) on the other side. This arrangement reduces the current carrying requirements of the distribution board, eliminates cabling, and reduces costs.

Figure 3 shows the chassis components.
Power is distributed from the power supply units through the PDB to the trays and blades. Management signals are routed between the Chassis Manager and the blades through the PDB and tray via serial communication signals and discrete on/off signals.

The tray backplane carries power, management, and high-speed I/O through a blind-mate connection to the blade as seen in Figure 4. The Ethernet (10 Gigabit) networking and serial-attached small computer system interface (SAS) storage signals pass through the blind-mate connector and are routed to attachments at the rear of the chassis. The cables are routed through the rear of the chassis to networking equipment placed elsewhere. Note that running the cables through the rear of the blade eliminates the need to connect directly to the servers. Once provisioned, the network cabling should only be touched when a cable or switch fails. The type and number of networking switches depends on the specific deployment.
5 Chassis Specification

The following sections describe the chassis.

The chassis is an assembly of interlocking components designed to be individually mounted to the rack. It provides structure and airflow to the blades and other electrical subsystems.

5.1 Chassis Physical Specification

The physical specifications for the chassis include the dimensions and a description of the guiding and latching features.
5.1.1 Volumetric Specifications

Figure 5 shows details of the chassis from the rear, and Figure 6 shows details of the chassis from the front.

The chassis is enclosed at the top and bottom of the rear airflow plenum to minimize recirculation and maximize blade cooling. The top of the chassis is also enclosed to
ensure that air passes through the blades. Note that airflow blanks are required for slots that are not occupied by blades. These blanks must be closed to airflow to avoid short-circuiting the adjacent blades.

The following figures show the dimensions of the main system components: the chassis, the tray, and the blade.

Figure 7 shows the dimensions of the chassis.

![Figure 7. Overall chassis dimensions (in mm)](image)

Figure 8 shows the dimensions of the tray.

![Figure 8. Overall tray dimensions (in mm)](image)

Figure 9 shows the overall dimensions of the blade.
Figure 9. Overall blade dimensions (in mm)

Figure 10 shows the chassis detailed dimensions. This is the volume the fully assembled chassis occupies within the rack.

Figure 10. Chassis volumetric requirements (0U plenum removed for clarity)
There is a separate inlet air plenum for the power supplies routed along the “0U” space of the rack. Features in the side plenum help seal this inlet when the chassis is secured in the rack so that the air from the hot aisle cannot enter the power supplies, as shown in Figure 11.

Figure 11. Rear rack column seal

The chassis can accommodate a rack column spacing of 736.6mm. The columns must use 9.5mm square holes. Air for the power supplies is drawn through the columns, as shown in Figure 12.
Figure 12. Column air flow passage

Sliding sub-assemblies are keyed to ensure that they are connected correctly, unless incorrect installation causes no damage. For example, the trays and blades are keyed so they will not be installed upside down; power supplies are not keyed because they cause no damage if installed upside down.

Note that if the blades will be shipped within the chassis, additional braces are required for support. The braces transfer forces directly to the rack columns and provide load-bearing support for the front of the blades.

Note also that the chassis is not intended to provide electromagnetic interference (EMI) containment.

5.1.2 Latching Features and Fasteners

Latches, as well as thumb screws and other components used to lock, unlock, or remove a subassembly from the chassis, are colored blue (Pantone code 285 C blue) to make them easy to identify. In the chassis, these latching features include:

- Fan door securing features
- Power supply unit latch covers
- Chassis Manager module securing features

To avoid confusion when removing a blade, the tray release wire form loops should not be colored blue.

Fasteners that require Torx drivers can be used to secure the chassis to the rack. Assembling the trays, blades, power supplies, and the fan tray does not require tools.

5.1.3 Power Distribution Unit Placement

Figure 13 shows the notch included in the chassis to make the power distribution unit (PDU) in the 1200mm rack replaceable. (Note that other figures in this document do not yet reflect this recent change.)
The chassis includes mounting holes to secure the PDU in the correct position, as shown in Figure 14 (this figure to be used for reference only).
5.2 Power Delivery

The chassis delivers power to the trays through the power distribution backplane printed circuit board assembly (PCBA). The PDB accepts six 39.3mm x 86.3mm x 197.6mm commodity off-the-shelf (COTS) power supply units to keep costs low. Six PSUs on a shared power backplane provides nearly ideal phase balancing of three-phase AC inputs, which allows a higher utilization of the incoming power.

Note that most of the weight of the power supplies is supported by the chassis, not by the power connector.

5.2.1 Power Distribution Backplane

The power distribution backplane provides power to each tray assembly, to the fan assembly, and to the Chassis Manager card.

The power distribution backplane also acts as the center point for chassis data communications, and includes the following cable connections:

- Local area network (LAN) 1, 2
- Serial COM 1, 2, 5, 6
- Power control switch outputs 1, 2, 3
- Chassis Manager power control input
- Fan door power, control, and monitoring

The power distribution backplane accepts 19 assemblies:

- Chassis Manager
- 12 tray backplane connectors
- Six power supply connectors

Figure 15 shows details of the power distribution backplane.
Figure 15. Power distribution board
5.2.2 PDB Interconnects

Table 1 lists the power distribution board connections.

<table>
<thead>
<tr>
<th>Assembly mounting</th>
<th>Assembly attachment</th>
<th>Connector description</th>
<th>Manufacturing part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDB J1-J6</td>
<td>Power supply unit</td>
<td>64 pin receptacle, vertical, two rows, 2.54mm pitch</td>
<td>(FCI) 10046971-001LF</td>
</tr>
<tr>
<td>PDB J7-J18</td>
<td>Tray backplane</td>
<td>High-power connector</td>
<td>(FCI) 10117936-003LF</td>
</tr>
<tr>
<td>PDB J25, J26</td>
<td>Chassis Manager</td>
<td>Dual, 1.00mm pitch, PCI Express x16 connector, 164 circuits each (328 circuits total)</td>
<td>(Amphenol) G630HAA15012EU</td>
</tr>
<tr>
<td>PDB</td>
<td>Fan assembly</td>
<td>20 pin connector, 2 rows, 4.2mm pitch</td>
<td>(Molex) 39-28-1203</td>
</tr>
<tr>
<td>PDB</td>
<td>RJ45</td>
<td>RJ45 for serial port</td>
<td>(Tyco) 5569284-1</td>
</tr>
<tr>
<td>PDB</td>
<td>RJ45</td>
<td>RJ45 for 1G LAN</td>
<td>(Amphenol) G71B0250100EU</td>
</tr>
<tr>
<td>PDB</td>
<td>PDU/Chassis Manager</td>
<td>Power switch control</td>
<td>(Molex) 353030251</td>
</tr>
</tbody>
</table>

5.3 Tray Specifications

The following sections describe the trays.

For service and debugging, the tray must be able to function in standalone mode (external to the chassis) for debugging. The tray can attach and receive power, Blade_EN, and serial signals without impacting cost or operation in production environments. The preferred method to attach to the tray is through headers that are not loaded for operation within the chassis.

The physical specifications for the trays include the dimensions of the tray volume and a description of the guiding and latching features.
5.3.1 Volumetric Specifications

Figure 16 shows the tray backplane and Figure 17 shows the tray cabling.

Figure 16. Tray backplane

Figure 17. Tray cabling
The tray's outer dimensions must not exceed those described, with all tolerances for different manufacturing methods (such as soft and hard tooling) accounted for; the tray's interior must be able to accept a blade as described in Section 3.1: Volumetric Specifications of this specification. The tray mechanically interlocks to the power backplane support to minimize the load the connector must support.

The chassis is designed to be installed into a rack that complies with the EIA-310-D standard (the current revision of the Electronic Industries Alliance standard for a 19” rack) without modification.

Figure 18 describes the opening in the chassis that accepts the trays, as viewed from the front of the system.

![Figure 18. Interior tray opening chassis volumetric](image)

The chassis interior consists of a series of flanges that extend from the side walls to support the trays. A power distribution board is located at the rear of the opening, on the left side as viewed from the front, to transfer power from the bulk power supply units to the trays.
Figure 19 shows the tray volume as seen from the front, and defines the location of the tray supports as related to the power connector.

A tray latch release is integrated into the chassis structure located on the left and right sides of the chassis opening.

Figure 20 shows a side view of the chassis. These dimensions are critical to the fit and function of the tray.
5.3.2 Guiding and Latching

The chassis supports the tray on a series of ledges located on each side wall. These ledges are designed and manufactured to prevent metallic slivers from forming when the tray is inserted into the chassis. Shoulder pins are included in the chassis side walls to secure the walls of the tray during insertion and prevent the tray from sagging under the load of the blades.

A pull-to-release spring latch is incorporated into the left-side and right-side panels to keep the tray in the chassis. Figure 21 shows a pull-to-release latch. Figure 20 shows the dimensions of the latch.

Figure 20. Side view of chassis

Figure 21 shows a pull-to-release latch.
5.3.3 Tray Interconnect

The tray provides the electrical interface to the blade, the PDB and external Networking and Storage cables. Figure 22 shows a top view of the tray features.
5.3.3.1 Tray-to-Cable Interconnects

The tray backplane carries high-speed signals from the blade connector to the cable connectors in the rear of the system. All applicable connectors in the backplane are pinned out. Signal delivery is through either one tray SKU with the backplane using all connectors, or through multiple tray SKUs with only specific connectors loaded.

Figure 23 shows the backplane and the connector signals (reference design shown).
Figure 23. Tray backplane cable interconnects

5.3.3.2 Tray Connectors

Table 2 lists the connectors used for the tray-to-blade and tray-to-cable electrical interfaces.

<table>
<thead>
<tr>
<th>Assembly mounting</th>
<th>Assembly attachment</th>
<th>Connector description</th>
<th>Manufacturing part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tray backplane</td>
<td>Blade</td>
<td>Power connector—AirMax</td>
<td>(FCI)10052620-4555P00LF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power receptacle—coplanar 2x2</td>
<td></td>
</tr>
<tr>
<td>Tray backplane</td>
<td>Blade</td>
<td>Signal connector—three pair, 54 contact, 2mm spacing, 19mm pitch, six-column press fit</td>
<td>(FCI) 10053656-101LF</td>
</tr>
</tbody>
</table>
Table 3 shows the pinout for the signal part of the power connector on the tray backplane.
Table 3. Pinout for Signal Portion of the Power Connector on the Tray Backplane

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>Tray input/output</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Node1_TXD</td>
<td>Input</td>
<td>Node 1 serial input</td>
</tr>
<tr>
<td>S2</td>
<td>Node1_RXD</td>
<td>Output</td>
<td>Node 1 serial output</td>
</tr>
<tr>
<td>S3</td>
<td>Node1_EN</td>
<td>Input</td>
<td>Node 1 power enable</td>
</tr>
<tr>
<td>S4</td>
<td>Node2_EN</td>
<td>Input</td>
<td>Node 2 power enable</td>
</tr>
<tr>
<td>S5</td>
<td>Node2_TXD</td>
<td>Input</td>
<td>Node 2 serial input</td>
</tr>
<tr>
<td>S6</td>
<td>Node2_RXD</td>
<td>Output</td>
<td>Node 2 serial output</td>
</tr>
<tr>
<td>S12</td>
<td>Node3_TXD</td>
<td>Input</td>
<td>Node 3 serial input</td>
</tr>
<tr>
<td>S11</td>
<td>Node3_RXD</td>
<td>Output</td>
<td>Node 3 serial output</td>
</tr>
<tr>
<td>S10</td>
<td>Node3_EN</td>
<td>Input</td>
<td>Node 3 power enable</td>
</tr>
<tr>
<td>S9</td>
<td>Node4_EN</td>
<td>Input</td>
<td>Node 4 power enable</td>
</tr>
<tr>
<td>S8</td>
<td>Node4_TXD</td>
<td>Input</td>
<td>Node 4 serial input</td>
</tr>
<tr>
<td>S7</td>
<td>Node4_RXD</td>
<td>Output</td>
<td>Node 4 serial output</td>
</tr>
</tbody>
</table>

Table 4 shows the power connector pin-out.

Table 4. Pinout for Power Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 through P4</td>
<td>12V return</td>
<td>9A per pin</td>
</tr>
<tr>
<td>P5 through P8</td>
<td>12V return</td>
<td>9A per pin</td>
</tr>
<tr>
<td>P9 through P12</td>
<td>12V supply</td>
<td>9A per pin</td>
</tr>
<tr>
<td>P13 through P16</td>
<td>12V supply</td>
<td>9A per pin</td>
</tr>
<tr>
<td>P17 through P20</td>
<td>12V supply</td>
<td>9A per pin</td>
</tr>
<tr>
<td>P21 through P24</td>
<td>12V supply</td>
<td>9A per pin</td>
</tr>
<tr>
<td>P25 through P28</td>
<td>12V return</td>
<td>9A per pin</td>
</tr>
<tr>
<td>P29 through P32</td>
<td>12V return</td>
<td>9A per pin</td>
</tr>
</tbody>
</table>
5.4 Blade Numbering

Blades are hard wired through the management subsystem to specific positions. This ensures that there is zero ambiguity for service or networking. Table 5 lists the blade numbers, with both front and rear views.

Table 5. Blade Numbers

<table>
<thead>
<tr>
<th>U number</th>
<th>Blades when viewed from front</th>
<th>Blades when viewed from rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U number</th>
<th>Blades when viewed from front</th>
<th>Blades when viewed from rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

6 Cooling System Specifications

The following sections describe the cooling system.

Cooling for the blades is provided by six 140mm x 140mm x 38mm shared rear-system fans mounted on the chassis. The fans are configured in an N+1 arrangement; if a fan fails, the system can maintain the required cooling with the remaining fans.

Power supplies are cooled by their internal fans and supplied with fresh air by a channel along the side of the server.
6.1 **Thermal Design Considerations**

The fans provide all of the cooling and airflow required by the blades; it is therefore critical to design the blades so that all of their components are sufficiently cooled by the system fans.

The cooling system was designed so that the fans consume the least amount of power possible while maintaining the necessary cooling. Thermal efficiency is typically reported as temperature rise across the blade (ΔT), which is equal to the difference between the average exhaust temperature and the average inlet temperature. For a given blade power consumption, a higher ΔT means that the fans are operating at a lower speed and consuming less power driving up the overall system efficiency; in other words, a slower fan speed means lower power consumption, which means a higher rise in temperature.

The blade server exhaust temperature directly reflects the hot-aisle temperature of a data center. The blade thermal-control system should include an exhaust temperature sensor (or other method to monitor the blade outlet temperature) to ensure that the system meets data center requirements.

6.2 **Blade Impedance**

The system airflow must provide sufficient cooling for an 18°C temperature rise for 600W thermal design power (TDP) per rack unit (equivalent to 300W TDP per blade) at the expected end-of-life of the fan.

Figure 25 shows the airflow impedance the blades must meet to achieve this required performance.
Blade impedance within 25 percent of the target ensures that all blades within the system receive sufficient airflow. Blade impedance that is too low results in higher airflow through the blade and lower airflow through the other blades in the system. Impedance that is too high results in a lower airflow through the blade.

It is possible to increase the blade impedance if the blade is designed for a TDP less than 300W; however, simulation and testing should be used to verify that there is no negative impact on other blades in the system and that the airflow for the entire system is sufficient. The following example for a blade with a TDP rating of 200W shows the preferred method for modifying the blade impedance curve.

1. Determine the flow rate required to meet the ΔT target by using the following equation.

 $$Q_2 = TDP_2 \times \left[\frac{Q_1}{TDP_1} \right] = 520\text{CFM}$$

 $TDP_1 =$ Thermal design power of the reference system (7200W)

 $Q_1 =$ Flow rate of the nominal target curve of the system (780CFM)
\(TDP_2 \) = Expected blade thermal design power (4800W)

\(\dot{Q}_2 \) = Required flow rate of the modified blades in the system

This equation provides the target flow rate for the lower-powered blade at maximum flow rate. The calculations must be based on the entire system flow to resolve the difference between the number of fans and the number of blades.

2. Using the end-of-life fan performance curve, find the equivalent pressure required to meet the flow rate (\(\dot{Q}_2 \)). This can be determined graphically or by interpolating the fan curve into an equation.

The following equation is a polynomial interpolation of the fan curve:

\[
P_2 = 2.98764 \times 10^{-7} \dot{Q}_2^2 - 1.15085 \times 10^{-3} \dot{Q}_2 + 9.4015
\]

\(\dot{Q}_2 = 520 \text{CFM} \)

\(P_2 \) = Required blade pressure at full fan speed for the lower-power blade

3. Use the fan law relationships to determine the pressure and flow curves at reduced fan speeds. This involves calculating the fan curve at lower fan speeds and relating the maximum operating point determined in the previous step to the lower fan speed.

\[
\dot{Q}_n = \dot{Q}_2 \left(\frac{\omega_2}{\omega_n} \right)
\]

\[
P_n = P_2 \left(\frac{\omega_2}{\omega_n} \right)^2
\]

\(\omega_2 \) = Full fan speed, 6600 RPM

\(\dot{Q}_2 = 520 \text{CFM} \)

\(P_2 = 0.42''\text{H}_2\text{O} \)

\(X_n = n \) represents the fan speed of interest
Table 6 shows the results of the calculations.

Table 6. Calculation Results

<table>
<thead>
<tr>
<th>(\omega_n) (in RPM)</th>
<th>(Q_n) (in CFM)</th>
<th>(P_n) (in “H_2_O”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>39.62</td>
<td>0.00241</td>
</tr>
<tr>
<td>935.7</td>
<td>74.14</td>
<td>0.008442</td>
</tr>
<tr>
<td>1371</td>
<td>108.7</td>
<td>0.01813</td>
</tr>
<tr>
<td>1807</td>
<td>143.2</td>
<td>0.03149</td>
</tr>
<tr>
<td>2243</td>
<td>177.7</td>
<td>0.0485</td>
</tr>
<tr>
<td>2679</td>
<td>212.2</td>
<td>0.06918</td>
</tr>
<tr>
<td>3114</td>
<td>246.8</td>
<td>0.09351</td>
</tr>
<tr>
<td>3550</td>
<td>281.3</td>
<td>0.1215</td>
</tr>
<tr>
<td>3986</td>
<td>315.8</td>
<td>0.1532</td>
</tr>
<tr>
<td>4421</td>
<td>350.3</td>
<td>0.1885</td>
</tr>
<tr>
<td>4857</td>
<td>384.9</td>
<td>0.2275</td>
</tr>
<tr>
<td>5293</td>
<td>419.4</td>
<td>0.2701</td>
</tr>
<tr>
<td>5729</td>
<td>453.9</td>
<td>0.3164</td>
</tr>
<tr>
<td>6164</td>
<td>488.4</td>
<td>0.3664</td>
</tr>
<tr>
<td>6600</td>
<td>523</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Figure 26 shows the results are shown in graphical form. The curve for the individual blade is the flow result of the analysis divided by 24 blades.
6.3 Fan System Performance

Figure 27 shows an example of the performance of a fan system that can be used for modeling and prototyping. The example is based on the performance of the 140mm x 140mm x 38mm fan system, with five full speed fans and one inactive fan at end-of-life. The graph gives the flow performance at the system level (for all fans in the plenum).
To use this data, a designer should build a model or prototype of the chassis, including all pertinent flow restrictions. The designer should then add the appropriate number of blades, and use the N-curve in Figure 27 to evaluate blade thermal performance.

Airflow blanks are required for slots that are not occupied by blades. These blanks should restrict airflow as much as possible to maximize flow performance to the blades within the chassis.

The system is designed to permit a service operation in which the fan tray is rotated away from the chassis for up to five minutes. After five minutes, blade component temperatures might be high enough to cause a thermal shut down. (The precise time that the tray can remain open before shut down will be determined after extensive testing of prototype hardware.)
6.4 **Fan Speed Control**

The fans have variable speed capability; this lets the system drive the fans at speeds only as high as necessary to cool the components, minimizing power consumption, noise, and fan failures.

6.4.1 **Pulse-Width Modulation Input**

The blades exchange thermal information with the Chassis Manager through an intelligent platform management interface (IPMI). The first sensor value in the IPMI table is the pulse-width modulation (PWM) duty cycle fan speed, a value between the non-critical limits of 0 (fan off) and 100 (fan running at full speed). Note that the minimum fan speed is 20 percent of duty cycle to ensure that the fan has enough torque to maintain rotation.

Using PWM signals simplifies the system-level control strategy and allows the system to be blade agnostic. Blades request their own fan speeds. The Chassis Manager polls each blade periodically for its fan flow rate request through a PWM signal, and then drives the fan speeds based on the highest request.

Blades are responsible for monitoring all thermally critical component temperatures and determining an appropriate fan speed. A closed-loop method for monitoring temperature and adjusting speed requests is highly recommended. At minimum, a fan speed table based on measured inlet temperature is required, and the inlet and outlet temperatures of thermally critical components (such as processors, DIMMs, and PCHs) should be available through the IPMI interface. These sensors should have identification values other than 1 and should not have metadata limits.

Table 7 lists important variables in fan control strategy.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target temperature band</td>
<td>Used to control limits of processor temperature</td>
</tr>
<tr>
<td></td>
<td>Upper = target temperature</td>
</tr>
<tr>
<td></td>
<td>Lower = target temperature – 4°C</td>
</tr>
<tr>
<td>Blade poll frequency</td>
<td>Frequency of blade temperature requests</td>
</tr>
<tr>
<td></td>
<td>10 seconds</td>
</tr>
</tbody>
</table>
Variable and Description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan speed decrease hysteresis</td>
<td>The amount of time the fan must wait between speed changes (prevents the fan speed from rising and falling too frequently) 1 minute</td>
</tr>
<tr>
<td>Altitude compensation</td>
<td>Increase speed by 3.2 percent for every 1000 ft (304m) above sea level (see Figure 28)</td>
</tr>
<tr>
<td>Active fan correction factor</td>
<td>[DC = DC_{base} \times \left(\frac{5}{N_{active}} \right)]</td>
</tr>
<tr>
<td></td>
<td>(DC) is the fan speed duty cycle requested by the Chassis Manager</td>
</tr>
<tr>
<td></td>
<td>(DC_{base}) is the base fan speed duty cycle before fan count and altitude correction</td>
</tr>
<tr>
<td></td>
<td>(N_{active}) is the number of active system fans (if no fans have failed, this is six)</td>
</tr>
<tr>
<td></td>
<td>(See Figure 29)</td>
</tr>
</tbody>
</table>

6.4.2 Fan Speed Correction for Altitude

Fan speed is increased by 3.2 percent for every 1000 ft (304m) above sea level. The location of the system must therefore be recorded during installation so that the correction can be made.

Figure 28 shows an example of fan speed correction for altitude.
6.4.3 Fan Speed Correction for Fan Failures

The Chassis Manager monitors the number of active fans and makes appropriate adjustments to the fan speed if a fan is detected to have failed (Section 4.5: Fan Failure provides more information about fan failure). A fan is considered to have failed if the tachometer speed returned to the Chassis Manager is below 20 percent of the requested speed for more than five minutes.

Figure 29 shows an example of the fan failure correction factor.
Note that fan failures trigger an alert so that the fan can be replaced (no action is required on the blade).

6.4.4 Sensor Failure

If a PWM signal from a specific blade is not detected or is determined to be unrealistic (less than 0 or more than 100), the blade is assigned a request of the minimum fan speed, and the speed requests from the other blades in the system will take priority.

If there is only one blade in the system and if the PWM signal is not present, the chassis will operate fans at the minimum speed. If blade activity forces a thermal shut-down under these conditions, the blade must be replaced or repaired.

If the blades in the chassis are plugged in but are in standby mode, the Chassis Manager will drive fan speed at the minimum level.
6.5 Fan Failure

Analysis shows that fan failures (tachometer speed below 20 percent of the requested speed for more than five minutes) are rare.

6.5.1 Fan Failure Rate

Failure rate for the fans is calculated using the following information:

- Mean time between failures (MTBF) provided by the manufacturer is 50K hours at 60°C
- Failure rate improves two times for every 10°C reduction
- Average outlet operating temperature is approximately 46°C, allowing for a greater than two times reduction
- Annualized failure rate is therefore:
 - 6x10E-6 per chassis
 - 2.4x10E-5 per rack
- Failures per year are therefore:
 - 0.05 for a chassis (one failure every 20 years)
 - 0.20 for a rack (one failure every 5 years)

Data from the server vendor indicates that the most common cause of fan failure is a lubricant leak, which causes a fan to speed up for approximately a week before stopping when the lubricant is gone. Chassis management can monitor the speed of the fans and identify an algorithm to address speeds that are too fast or too slow. When a fan failure is detected, chassis management will speed up the remaining fans to compensate.

6.5.2 Fan Repair

Fan repair can generally be deferred because the blades can withstand operation with minimal airflow for a short period of time. (How long fan repair can be deferred will be determined when the repair experience, the airflow data, and the impact on other services are better understood.)

If fan repair does become necessary, two technicians should be assigned to the task to minimize impact on the system. The fan tray assembly is mounted on a pinned
hinge so that the full tray can be easily removed for repair, and both sides of the fans have wire screen guards for safety during service.

The following steps describe how to replace a fan:

1. Prepare all materials and a ladder if the fan is in the upper half of the rack.
2. Open the fan door and disconnect the cable.
3. Lift the fan tray off the hinge.
4. Install the new fan tray onto the hinge.
5. Plug in the cable.
6. Close the fan door.

Note that if chassis management turned the chassis attention LED on because of the fan failure, it will turn the LED off when it detects that the fans are operating correctly.

6.6 Thermal Considerations for the Blade

The blade must be able to operate at full-load capacity in all conditions described in this specification, including the upper and lower ambient temperatures, humidity levels, altitude levels, and available fan capability. If conditions are outside the prescribed limits, the blade should continue to operate as long as hardware and data are not at risk; if conditions are likely to cause damage, the blade should be shut down.

For the largest possible operating range, the inlet temperature to the system should not drive blade shut down. The temperature of sensitive components should be individually monitored to prevent an unnecessary system shut down.

Note that blade components frequently have an average operating temperature target that optimizes long-term reliability and an upper temperature limit to prevent hardware damage and maintain data integrity. Components should normally operate at the target, but they can operate at a higher temperature for a short time as long as they remain below the upper limit.

The only thermal response the Chassis Manager gives is control of fan speed. While alerts are logged if a fan or a blade fails, the Chassis Manager does not request
blade shut downs. The blade is responsible for shut downs or throttling caused by high inlet temperature.

7 Chassis Power

Within the rack, chassis power limits are determined by the power-supply power limits under worst-case failure conditions. The power supplies cannot be run at more than 95 percent of maximum output capacity for long periods of time. The total blade power of a deployment therefore cannot exceed these values. The specific power cord and redundancy option (N+N or N+1) must also be considered when determining the final sizing.

Table 8 shows the maximum blade power per chassis, the maximum AC cord load, and the AC power per rack for different rack loads. Note that additional power is required for the fans and also contributes to the AC load.

<table>
<thead>
<tr>
<th></th>
<th>Max chassis blade load</th>
<th>Max chassis AC cord load</th>
<th>Rack AC power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 chassis</td>
</tr>
<tr>
<td>N+N power</td>
<td>3500 W</td>
<td>4100 W</td>
<td>8.2 kW</td>
</tr>
<tr>
<td>N+1 power</td>
<td>6000 W</td>
<td>6800 W</td>
<td>13.6 kW</td>
</tr>
</tbody>
</table>

Table 9 shows the average power for blades given the chassis limits. Note that the lower the number of blades in the chassis, the higher the amount of power per chassis. Note also that there is a per-blade limit of 300W. For unequal loading (for example, when using storage servers), average power can be estimated by calculating the average power for the compute blades and associated storage blades.

Table 9. Average Loading for Blades
8 Operating Environment

Table 10 describes the environmental requirements in which the blades operate.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet temperature</td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>• 50°F to 95°F (10°C to 35°C) at sea level</td>
</tr>
<tr>
<td></td>
<td>• Maximum rate of change: 18°F (10°C)/hour</td>
</tr>
<tr>
<td></td>
<td>• Allowable derating guideline of 1.6°F/1000ft (0.9°C/304m) above 3000 ft</td>
</tr>
<tr>
<td>Non-operating</td>
<td>• -40°F to 140°F (-40°C to 60°C)</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 36°F (20°C)/hour</td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>• 10% to 80% non-condensing</td>
</tr>
<tr>
<td></td>
<td>• Maximum Rate of Change: 20% RH per hour</td>
</tr>
<tr>
<td></td>
<td>• Maximum dewpoint: 85°F (29.4°C)</td>
</tr>
<tr>
<td>Non-operating</td>
<td>• 5% to 95% non-condensing</td>
</tr>
<tr>
<td></td>
<td>• 100.4°F (38°C) maximum wet bulb temperature</td>
</tr>
<tr>
<td>Altitude</td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>• 10000ft (3050m) maximum</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 1500 ft/min (457m/min)</td>
</tr>
<tr>
<td>Non-operating</td>
<td>• 30000ft (9144m) maximum</td>
</tr>
<tr>
<td></td>
<td>• Rate of change less than 1500 ft/min (457m/min)</td>
</tr>
</tbody>
</table>

9 Safety and Compliance Documentation

Table 11 lists the applicable compatibility and safety compliance documentation for the system. The server and/or the server components must comply with regulations and test procedures.
<table>
<thead>
<tr>
<th>Document</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR 22/EN 55022 Class A & EN 55024</td>
<td>Immunity requirements</td>
</tr>
<tr>
<td>EN 55024</td>
<td>"Information technology equipment - Immunity characteristics - Limits and methods of measurement." European Committee for Electrotechnical Standardization (CENELEC), 1998.</td>
</tr>
</tbody>
</table>

10 Shock and Vibration Requirements

Table 12 lists the shock and vibration requirements for the system. These tests simulate normal transportation and handling conditions that the systems might
Table 12. Shock and Vibration Requirements

<table>
<thead>
<tr>
<th>Specification (if applicable)</th>
<th>Packaged/unpackaged</th>
<th>Details</th>
<th>Pass criteria</th>
</tr>
</thead>
</table>
| ASTM D4728 | Assembled blades and chassis in rack, packaged | • Air cushion transportation vibration test
Test to the normal rest surface (bottom side) for one hour of vertical direction (Z-axis)
Palletized | • Normal function after test, no connector or mechanical damage
• No component unseating |
| NEBS GR-63-CORE Issue 3, March 2006 | Assembled blades and chassis in rack, packaged | • 100mm (3.9in) drop on the normal rest surface (bottom side)
• Perform two drops
Palletized | • Normal function after test, no connector or mechanical damage
• No component unseating |
| Telcordia GR-63-CORE, Section 5.4.2 | Rack level, unpackaged in a system | • Operational
• Swept sine, 0.1g, 5-100-5Hz, 0.1 octave/min
• Three axis | • No errors in the running of the software |
| Not applicable | Rack level, unpackaged in a system | • Operational
• System fans at 20, 40, 60, 80, and 100% duty cycle
• All hard drives running 1K random writes and 64K sequential writes | • Hard drive read/write errors within 1K random writes
performance≥90%
• 64K sequential writes performance≥85% of peak performance |
| Not applicable | Blade level, unpackaged | • Non-operational
• Random vibration, 10-500Hz, 1.87Gms
15min/side, six sides tested | • No visible damage
• Blade operational when tested after vibration |
| Not applicable | Blade level, unpackaged, 0=blade≤18kg | • Non-operational
• Square wave
32g peak
6.85 m/s velocity change
Six sides | • No visible damage
• Blade operational when tested after shock |
<table>
<thead>
<tr>
<th>Specification (if applicable)</th>
<th>Packaged/unpackaged</th>
<th>Details</th>
<th>Pass criteria</th>
</tr>
</thead>
</table>
| Not applicable | Blade level, unpackaged, 18<blade≤34kg | • Non-operational
• Square wave
• 27g peak
• 5.97 m/s velocity change
• Six sides | • No visible damage
• Blade operational when tested after shock |
| Telcordia GR-63-CORE, Section 5.3.1 | Blade level, packaged, 0=blade≤15kg | • Non-operational
• 1000mm drop
• 13 drops on sides, edges and corners | • No visible damage
• Blade operational when tested after all shocks |
| Telcordia GR-63-CORE, Section 5.3.1 | Blade level, packaged, 15<blade≤20kg | • Non-operational
• 800mm drop
• 13 drops on sides, edges and corners | • No visible damage
• Blade operational when tested after all shock |
| Telcordia GR-63-CORE, Section 5.3.1 | Blade level, packaged, 20<blade≤30kg | • Non-operational
• 600mm drop
• 13 drops on sides, edges and corners | • No visible damage
• Blade operational when tested after all shock |
| Not applicable | Blade level, packaged | • Non-operational
• 1.146 Grams
• Single blade package
• 15 minutes/side
• 6 sides tested
• If bulk packaged
• One hour on normal rest surface | • No visible damage
• Blade operational when tested after vibration |
Figure 30 shows an example of the results of a rack package vibration test.
11 Appendix: Commonly Used Acronyms

This section provides definitions of acronyms used in the system specifications.

ACPI – advanced configuration and power interface

AHCI – advanced host controller interface

AHJ – authority having jurisdiction

ANSI – American National Standards Institute

API – application programming interface

ASHRAE – American Society of Heating, Refrigerating and Air Conditioning Engineers

ASIC – application-specific integrated circuit

BCD – binary-coded decimal

BIOS – basic input/output system

BMC – baseboard management controller

CFM – cubic feet per minute (measure of volume flow rate)

CM – Chassis Manager

CMOS – complementary metal–oxide–semiconductor

COLO – co-location

CTS – clear to send

DCMI – Data Center Manageability Interface

DDR3 – double data rate type 3

DHCP – dynamic host configuration protocol

DIMM – dual inline memory module

DPC – DIMMs per memory channel

DRAM – dynamic random access memory

DSR – data set ready

DTR – data terminal ready

ECC – error-correcting code

EEPROM – electrically erasable programmable read-only memory

EIA – Electronic Industries Alliance

EMC – electromagnetic compatibility

EMI – electromagnetic interference

FRU – field replaceable unit

FTP – file transfer protocol

GPIO – general purpose input/output

GUID – globally unique identifier

HBI – high business intelligence

HCK – Windows Hardware Certification Kit

HMD – hardware monitoring device

HT – hyperthreading

I²C – inter-integrated circuit

IBC – international building code

IDE – integrated development environment
IEC – International Electrotechnical Commission
IOC – I/O controller
IPMI – intelligent platform management interface
IPsec – IP security
ITPAC – IT pre-assembled components
JBOD – “just a bunch of disks”
KCS – keyboard controller style
L2 – layer 2
LAN – local area network
LFF – large form factor
LPC – low pin count
LS – least significant
LUN – logical unit number
MAC – media access control
MDC – modular data center containers
MLC – multi-level call
MTBF – mean time between failures
MUX – multiplexer
NIC – network interface card
NUMA – non-uniform memory access
OOB – out of band
OSHA – Occupational Safety & Health Administration
OTS – off the shelf
PCB – printed circuit board
PCIe – peripheral component interconnect express
PCH – platform control hub
PDB – power distribution backplane
PDU – power distribution unit
Ph-ph – phase to phase
Ph-N – phase to neutral
PNP – plug and play
POST – power-on self-test
PSU – power supply unit
PWM – pulse-width modulation
PXE – preboot execution environment
QDR – quad data rate
QFN – quad flat package no-lead
QPI – Intel QuickPath Interconnect
QSFP – Quad small form-factor pluggable
RAID – redundant array of independent disks
REST – representational state transfer
RM – Rack Manager
RMA – remote management agent
ROC – RAID-on-chip controller
RSS – receive-side scaling
RTS – request to send
RU – rack unit
RxD – received data
SAS – serial-attached small computer system interface (SCSI)
SATA – serial AT attachment
SCK – serial clock
SCSI – small computer system interface
SDA – serial data signal
SDR – sensor data record
SFF – small form factor
SFP – small form-factor pluggable
SMBUS – systems management bus
SMBIOS – systems management BIOS
SOL – serial over LAN
SPI – serial peripheral interface
SSD – solid-state drive
TB – tray backplane
TDP – thermal design power
TB – tray backplane
TOR – top of rack
TPM – trusted platform module
TxD – transmit data
U – rack unit
UART – universal asynchronous receiver/transmitter
UEFI – unified extensible firmware interface
UL – Underwriters Laboratories
UPS – uninterrupted power supply
Vpp – voltage peak to peak
WMI – Windows Management Interface