Type A IPM Controller

Hank Bruning
JBlade
hank@jblade.com
The Goal #1

- Increase the raw data describing the hardware
 - Inventory data on DDR3/DDR4 and optical
 - More Sensors
 - SFP+ optical module 22 sensors (5 are temperature)
 - CXP optical module 62 sensors (13 are temperature)
 - DDR3/DDR4 has a single temperature sensor
 - More sensors allow raising DC temperature and get feedback how close to failure you are
Goal #2
• Provide a uniform optical(QSFP+/CXP), memory DDR3/DDR4, and chassis identification for:
 • Servers
 • Storage
 • Network switches
• No operating system is required
• Independent of CPU type
Type A IPM Controller Overview
An implementation of IPMI FRU data and commands to:

- OCP Chassis identification including 1/2 U height
- IPMI Commands that are mandatory
- DDR3/DDR4 inventory and temperature sensors
- Optical XFP/SFP/QSFP/CXP Inventory and control
- IPMI Command to reset IPMI back to system defaults
Type A is not mandatory

Building block

- A future Type B may do the same thing at a different price point. DMTF?

Different Type Deployment scenarios

- First 1000 servers from a new Generation
- Only present in every 10th rack
- A mix of Type A and others in a multi node
Example of IPM Controller Spec Family

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IPMI DDR memory/ Optical</td>
</tr>
<tr>
<td>B</td>
<td>Same at Type A but DMTF and no IPMI</td>
</tr>
<tr>
<td>C</td>
<td>Multi node IPMB Bus Security</td>
</tr>
<tr>
<td>D</td>
<td>IPv6 Multicast of sensor readings</td>
</tr>
<tr>
<td>E</td>
<td>IPMI PCIe SSD Encryption Key Management</td>
</tr>
</tbody>
</table>

- Multiple specifications allow the Data Center to comparison shop
Type A IPM Controller Functions
Chassis Identification
Problem: Can not identify OCP chassis
• A rack layout can not be drawn
• OCP allows 1/2 U high chassis
 • Minimum size is 1U
• Can not identify a OCP compliant chassis
 • Don’t know if OCP IPMI commands should be sent to the chassis
OCP Chassis Identification

• Need to identify Server/Storage/Switch using OCP 1/2 U size.

• Does not allow different heights from and rear. No stair step servers.

• Implemented with FRU Info Multi record
Mandatory IPMI Implementation
Problem. Inconsistent IPMI

- Cost pressure increases the number of incompatible IPMI implementations

- Data Center needs some assurance that new hardware will work with old System Manager
Mandatory IPMI Commands

• Get Channel Authentication Capabilities
 • valid inside and outside RMCP session

• SDRs for Fan speed must contain a max RPM
 • some vendors set it max speed to zero. Can not inform user how close to max speed the fan is running
 • Operator has no data to understand how close to a temperature alarm they are
DDR3/DDR4 Support
Problem: DDR3/DDR4 heat

• DDR3 memory varies widely

• Module case temperature options
 • 85° C with refresh rate 65ms
 • 95° C with refresh rate 32ms

• Memory speed
• Is 100% of memory access from single Rank
• Does module have a heat sink?

• DC has no view into memory temperatures
DDR3/DDR4 Slot Inventory
• Server/Storage/Switch has static FRU Info with the quantity and type of memory slots
 ▪ Mapping of allows finding total slot count, never changes from IPMI view
 ▪ Independent of memory module population
 ▪ Inventory includes vendor dependent slot name. Error messages specific to slot.
 ▪ Implementation is changed. Now use FRU Device Locator Record. No custom software.
DDR3/DDR4 Module Inventory

- Map the Serial Presence Detect data to FRU ID
 - Vendor, model, serial number
 - Capacity
 - Speed
 - Temperature rating 85°C or 95°C rating
DDR3/DDR4 Module Inventory Benefits

- Real time database on memory population.
- Allows finding servers:
 - with enough capacity to load an O/S and application
 - with empty memory slots to upgrade
 - with DDR3/DDR4 modules that can be replaced with higher capacity
 - when decommissioning what memory can be removed and reused in new hardware
DDR3/DDR4 sensors

- IPMI Present/Absent sensor for memory module
- Temperature sensor

 - Alarm thresholds built from 85°/95° C
 - DC can decrease workload on servers with temperature alarms
 - DC more likely to raise air temperature if they know memory modules are within operating bounds
Optical XFP/SFP+/QSFP+/CXP Support
Problem: Optical modules vary

- Protocol independent way to diagnose problems
 - Fiber Chanel
 - Infiniband
 - 100G Ether
 - 128G SAS
Leverage IPMI to monitor optical links

- System Manager uses identical diagnostics

![Diagram of network components](image)

- **System Manager**
 - **Type A Storage** connected by Fiber channel
 - **Type A Server** connected by 100 G Ether
 - **Type A Switch**
Problem: Optical modules vary

- Optical Tx/Rx power varies by temperature and voltage
- Raise room temperature optical links may fail.
- SFF-8636 allows real time measurement of optical link margins
Optical Bay Inventory

- Bays are identified by:
 - FRU ID
 - Location Front/Rear
 - Type XFP/SFP+/QSFP+/CXP
 - Row/Column. For drawing highlights
 - Vendor dependent bay name so System Manager provides bay dependent error messages
Optical Module Inventory

- Map 128 Bytes of SFF defined data to FRU ID
 - Vendor ID, Model, Serial number
 - Optical transmit power 1.0, 1.5, 6.5 watts
Optical Module Sensors
• IPMI Present/Absent sensor for optical module

• Detect and process within 20 seconds

• Each optical lane has 5 sensors, two thresholds
 ▪ Transmit optical power
 ▪ Temperature
 ▪ Receive power (two way to measure)
 ▪ Transmit Bias
 ▪ Input voltage
IPMI Reset Command
Problem: No way to reset IPMI variables

- Only current way to do this is reflash BMC
- No quick way to return Server/Storage/Switch to factory default states
- Reflashing slows down testing and deployment
- Data Centers supplying colocated bare metal servers may have customers with IPMI access which needs to be reset
IPMI Reset Command

- Restore IPMI subsystem to defaults

- Limited to IPMI. Not change to BIOS or PMBus
 - Defaults are what ever vendor defines
 - Not happy with the way it’s written
 - No OCP vendor independent testing possible
 - No consistent RMCP account, VLAN, IP
Future Changes
Potential Changes to specification

▪ Move optical to a separate specification
▪ Add options to define what happens with Event Log Full. Discard new events vs. discard oldest events
▪ Make RMCP session activation a sensor that gets logged.
 ▪ Discover RMCP account attacks
▪ Win for colocation Data Centers supplying bare metal
▪ Good for multi-node?
Questions?

Ask on the OCP HW Management reflector