Flash for the Future
Software Optimizations for Non Volatile Memory

Nisha Talagala, Lead Architect, Fusion-io
Gary Orenstein, Chief Marketing Officer, Fusion-io @garyorenstein
OpenNVM

Welcome to the open source project for creating new interfaces for non-volatile memory (like flash).

GNU Public License v2.0

http://www.opencompute.org/projects/storage/
Community Participation
Creating Flash-Aware Apps

I/O source code written for disk
Creating Flash-Aware Apps

I/O source code written for disk

(Flash disguised to look like a disk)
Creating Flash-Aware Apps

I/O source code written for flash
Creating Flash-Aware Apps
Leveraging the Community

OpenNVM

Welcome to the open source project for creating new interfaces for non-volatile memory (like flash).

GNU Public License v2.0

https://opennvm.github.io

http://www.opencompute.org/projects/storage/
3 Contributions to the Community

Current OpenNVM Repositories

Flash-aware Linux swap
When working set size exceeds the capacity of DRAM, demand page from a flash-aware virtual memory subsystem.

Key-value interface to flash
Create NoSQL databases faster. Automate garbage collection of expired data.

Flash programming primitives
Use built-in characteristics of the Flash Translation Layer to perform journal-less updates (more performance and less flash wear = lower TCO)

https://opennvm.github.io
1st Contribution: Flash Primitives

- On GitHub:
 - API specifications, such as:
 - `nvm_atomic_write()`
 - `nvm_batch_atomic_operations()`
 - `nvm_atomic_trim()`
 - Sample program code

https://opennvm.github.io
Flash Primitives: Sample Uses and Benefits

- **Databases**
 - Transactional Atomicity:
 Replace various workarounds implemented in database code to provide write atomicity
 example: MySQL double-buffered writes

- **Filesystems**
 - File Update Atomicity:
 Replace various workarounds implemented in filesystem code to provide file/directory update atomicity
 example: journaling

- **98% performance of raw writes**
 Smarter media now natively understands atomic updates, with no additional metadata overhead.

- **2x longer flash media life**
 Atomic Writes can increase the life of flash media up to 2x due to reduction in write-ahead-logging and double-write buffering.

- **50% less code in key modules**
 Atomic operations dramatically reduce application logic, such as journaling, built as work-arounds.
Atomic Writes: MySQL Example

Traditional MySQL Writes

- Database Server
- DRAM Buffer
- Buffer
- SSD (or HDD)
- Database

MySQL with Atomic Writes

- Database Server
- DRAM Buffer
- ioMemory
- Database
2-4x Latency Improvement on Percona Server

Sysbench 99% latency OLTP workload

Latency

Seconds

XFS DoubleWrite Atomic Writes
70% Transactions/sec Improvement on MariaDB Server

XtraDB 5.5.30 – Atomics | TPC-C - 2500 warehouses | 230GB data - 50GB buffer pool

New Order Transactions (10 sec)
2nd Contribution: Linux Fast-Swap

On GitHub

- Documentation
- Experimental Linux kernel with virtual memory swap patch (3.6 kernel)
- Benchmarking utility

https://opennvm.github.io
Improving Linux Swap (Demand-paging)

Originally designed as a last resort to prevent OOM (out-of-memory) failures
- Never tuned for high-performance demand-paging
- Never tuned for multi-threaded apps
- Poor performance

Tuned for flash (leverages native characteristics)
- O(1) algorithm for swap_out – reduce algorithm time and leverage fast random I/O
- Per CPU reclaim – greater throughput for multi-threaded environments
- Intelligent read-ahead on swap-in – cut legacy, disk-era cruft for rotational latency
3x Performance with Fast Swap

- ~2x improvement in page-out rate
- ~3.5x improvement in page-in and out rate
- ~3x reduction in load completion time
3rd Contribution: Key-Value Interface

On GitHub:

- API specifications, such as:
 - `nvm_kv_put()`
 - `nvm_kv_get()`
 - `nvm_kev_batch_put()`
 - `nvm_kv_set_global_expiry()`

- KV library source code
- Sample program code
- Benchmarking utility
- Community contributions – Java bindings

https://opennvm.github.io
Key-Value Interface: Sample Uses and Benefits

- **NoSQL Applications**
 Increase performance by eliminating packing and unpacking blocks, defragmentation, and duplicate metadata at application layer.

 Reduce application I/O through batched operations.

 Reduce overprovisioning due to lack of coordination between two-layers of garbage collection (application-layer and flash-layer). Some top NoSQL applications recommend over-provisioning by 3x due to this.

- **Near performance of raw device**
 Smarter media now natively understands a key-value I/O interface with lock-free updates, crash recovery, and no additional metadata overhead.

- **3x throughput on same SSD**
 Early benchmarks comparing against synchronous levelDB show over 3x improvement.

- **Up to 3x capacity increase**
 Dramatically reduces over-provisioning through coordinated garbage collection and automated key expiry.
Key-Value Interface for Performance
Key-Value get/put, Raw read/write, levelDB read/write

GET and READ

<table>
<thead>
<tr>
<th>Threads</th>
<th>Ops/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>450000</td>
</tr>
</tbody>
</table>

PUT and WRITE

<table>
<thead>
<tr>
<th>Threads</th>
<th>Ops/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>160000</td>
</tr>
</tbody>
</table>

- NVMKV
- Raw device
- Leveldb-sync
OpenNVM, Standards, and Consortiums

- opennvm.github.io
 - Primitives API specifications, sample code
 - Linux swap kernel patch and benchmarking tools
 - key-value interface API library, sample code, benchmark tools

- INCITS SCSI (T10) active standards proposals:
 - SBC-4 SPC-5 Atomic-Write
 http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
 - SBC-4 SPC-5 Scattered writes, optionally atomic
 http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
 - SBC-4 SPC-5 Gathered reads, optionally atomic
 http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

- SNIA NVM-Programming TWG v1.0
 http://snia.org/tech_activities/standards/curr_standards/npm
Apps Using OpenNVM technology

https://opennvm.github.io
Join us at opennvm.github.io