
2. [15] What’s next for open hardware standards—intentions, call for participation, Community involvement and coordinate

3. [30] Commercial products in the OCP pipeline

4. [30] Panel Discussion on Telco/Operator sourcing models and ecosystem

5. [30] Updates from community: POCs, deployments, and disaggregation
1. Carrier Grade Open Rack Architecture (CG-OpenRack-19)
CG-OpenRack-19 Achieves OCP Acceptance

A collaborative community focused on redesigning hardware to efficiently support the growing demands of compute infrastructure.

Radisys contributed the Carrier Grade Open Rack concept to OCP in the form of a Rack + Sled interop specification.

DCEngine is a commercially available product family compliant with this specification.

CG-OpenRack-19 Specification

OCP-ACCEPTED™

CG-OpenRack-19 Specification
CG-OpenRack-19 High Level Architecture

Switching

Usable Compute / Storage Capacity

Power

Standard 19” Rack

Vertical 12VDC bus bar in frame mates with power connector located on sled

4 x optical fiber ports via blind mate rear connector to sled
Physical
- Suitable for CO retrofit and new telco data center environments
- 19” rack width and standard “RU” spacing for greatest flexibility
- 1000 to 1200mm cabinet depth, supporting GR-3160 floor spacing dimensions

Content/workload
- Heterogeneous compute and storage servers

Management
- Ethernet based OOB management network connecting all nodes via a TOR management switch
- Optional rack level platform manager

Networking/Interconnect
- One or more Ethernet TOR networking switches for I/O aggregation to nodes
- Fiber cables, blind-mate with flexible interconnect mapping.
- Environment, power, seismic & acoustic CO environmental requirements applicable
- Safety and other certification standards also applicable
- NEBS optional (L1/L3)
OCP Design Principles: OpenRack

• **Open**
 Community-driven; Multi-vendor; No lock-in; Fast-moving

• **Efficient**
 Performance optimized for IT data centers; Simple core building blocks; Power and thermal efficiency

• **Scale**
 Web-scale ready; Simple management & maintenance; Mass upgrades

Disaggregates and Normalizes Web-scale Computing
OCP Design Principles: CG-OpenRack-19

- **Open**
 - Open spec and designs starting from OCP baseline
 - Multi-vendor and multi-user collaboration from day one
 - Aligns with existing standard telco and COTS geometries and interfaces
 - Support for heterogeneous and accelerated solutions via standard plug-in cards

- **Efficient**
 - Inherits key OCP principles
 - Performance optimized for CO data center environment
 - Self-contained sleds for thermal and emissions isolation
 - Half-rack sled width well suited for brawny server designs across multiple processor generations

- **Scale**
 - Leverages OCP web-scale principles
 - Standard blind-mate optical interconnect for faster build-out, maintenance and multi-generational upgrading

Brings OCP to Service Providers, Tracking but Decoupled from Web-co driven changes
What does OCP-ACCEPTED™ status mean to me as a Service Provider?

• Break Open the Black Box of Proprietary Infrastructure
• Gain Control and Choice
• Reimagine the Hardware and Software
• Make Solutions More Efficient, Flexible and Scalable
• Customize
• Save $
OCP CG-OpenRack-19 Status and Next Steps

• Framework/Interop Specs
 • Current spec focuses mainly on sled-level interop, which is most critical for supplier ecosystem development; next focus on Rack and Management aspects
 • Updating of specs as new innovations take place in community

• Product Contributions
 • Vendors contributing DCEngine product designs, including rack, compute, and storage sleds
 • See later section in Workshop Agenda for more details

• OCP Events
 • Sessions at Summit (March, Santa Clara): “Delivering Carrier-Grade OCP to Telco Data Centers” and “Hardware Management for Radisys DCEngine Hyperscale Platform”
 • Sessions at this Workshop (May, Austin): Ecosystem and sourcing model focus

• Ecosystem Incubation and Promotion
 • Multi-vendor ecosystem in use in current solutions
 • Expanding to include more options
 • Encouraging new participants to expand market footprint
 • Customers also key part of ecosystem
2. What’s next for open hardware standards
• **Management**
 • See following (subset of) presentation from 2017 OCP Summit

• **Rack**
 • Product contributions for various sized racks
 • Potential area for some basic normalization across solutions – i.e., via framework specs
Hardware Management for CG-OpenRack-19

Suzanne Kelliher, Product Line Manager, Radisys
Nilan Naidoo, Principal Engineer, Radisys
CG-OpenRack-19 Hardware Management Overview

- **Create Cohesion Across CG-OpenRack-19 Implementations**
 - Leverage existing HW management standards: IPMI 2.0, DCMI 1.5 and Redfish
 - Each node is independently managed by BMC
 - Includes cooling of shelf containing the node

- **Leverage OCP hardware management premise**
 - Leverage existing HW management standards: IPMI 2.0, DCMI 1.5 and Redfish
 - Each node is independently managed by BMC
 - Includes cooling of shelf containing the node

- **Add Options as Necessary for Simple, Efficient Rack Management**
 - Device Management switch can be used to run Rack Management applications
 - Example, Location Aware Discovery
 - Rack Agent Module provides access to PSU & PDU, and additional physical security features, i.e. door locks

- **Options for Rack Management**
 - Provide basic rack level management using Redfish API based on open sourced Intel® RSD framework
 - Intel® RSD Architecture Compliant

- **Connects to dedicated BMC port on each node, Rack Agent & Management port of other switches**
- **One uplink out of rack provides OOB management access to all devices in rack**
- **Open Linux environment enables Rack Level Management applications**

- **Shelf HW Management provided by Server BMC**
 - FRU Inventory
 - Sensor Data
 - Power on/off/reset
 - Power consumption
 - Boot order control
 - Remote Console (SOL, KVM)
 - Virtual media
 - Front Panel Indicators
 - Interfaces: IPMI 2.0, DCMI 1.5, Redfish

- **Rack Agent provides Ethernet access to PSU & PDU**
 - Abstracts PSU & PDU management standard interface (IPMI, Redfish, SSH CLI)
 - PSU & PDU Inventory
 - Rack level power
Intel® RSD is a logical architecture that disaggregates compute, storage, and network resources

- Introduces the ability to pool these resources for more efficient utilization of assets
- Provides the ability to dynamically compose resources based on workload-specific demands from a set of compute, fabric, storage, and management modules that work together to build a wide range of virtual systems

The design uses four basic pillars:

- POD Manager for multi-rack management
- Pooled system of compute, network, and storage resources are composed based on workload requirements
- Pod-wide storage built on Ethernet-connected storage
- A configurable network fabric of hardware, interconnect with cables and backplane, and management software

Intel RSD based on open industry standard Redfish*

Intel has open sourced reference implementation of following components:

- Pod Manager
- Pooled System Management Engine (PSME)
- Rack Management Module (RMM)
- Validation Test Suite (VTS)

Source code: https://github.com/01org/intelRSD
A key attribute of Intel® RSD management is location-aware discovery
- A mechanism for numbering each component is required

Each Rack has a unique ID
- Configured by operator

RSD defines a 3 level hierarchy for modeling computer systems
- Drawer – maps to a shelf
- Module – logical entity
- Blade – maps to server motherboard

Numbering scheme for blades in a rack:
- `<Drawer Row>.<Drawer Column>.1.<Blade Id>`
Extended RSD PSME reference code to run on Device Management switch
- Extended Chassis and Compute GAMI IPMI interfaces to interact with BMC
- Extended Network Agents to run on Cumulus Linux on Data switches

Added Location Aware Discovery application to discover and determine blade locations
- Monitors switch ports to determine presence/absence of devices in the rack
- Uses Port-to-Device Mapping configuration file to map learned MAC addresses to Blade & Switch location
 - MAC -> Port -> Location
- To overcome limited visibility of blade inventory through IPMI, uses a configured server device tree file for each Product Id
 - Server device tree file describes list of components (CPU, Memory, Drives, etc.)

PSME Interfaces to Location Aware Discovery application through API
- Retrieves BMC parameters
- PSME will use contents of device tree file to fill in information not accessible via IPMI
- Listens for device state changes
Rack Agent Architecture

- Rack Agent module consists of a Controller module following I/O:
 - I2C interface to interface to PMBus
 - Ethernet Interfaces for uplink to device management switch
 - Serial console for debugging & initial setup
 - GPIO signals to monitor PSUs and Circuit Breakers on PDU
 - Other sensors required to monitor health of the module
 - OpenBMC is a good fit

- PSU/PDU Management
 - Presence & Inventory info of PDU & PSU
 - PSU Input and Output Voltage/Current
 - PDU Circuit Breakers
 - Temperature
 - Fan speed & status
• **Discovery**
 • Chassis
 • Computer systems
 • Managers

• **Server Information**
 • Server identification and asset info
 • Host Network MAC addresses
 • Local storage
 • Power supply and fans
 • State and Status

• **Common Manageability**
 • Change boot order / device
 • Reboot / power cycle server
 • Power usage and thresholds
 • Temperature

• **BMC Infrastructure**
 • View / configure BMC network settings

• **Access and Notification**
 • Subscribe/publish event model
• To provide cohesion across CG-OpenRack-19 implementations

• We are considering contributing the location aware discovery application and Intel® RSD enhancements
 • It enables basic hardware management of rack using Redfish

• Please join us on in the Radisys booth to see DCEngine and see a demonstration of this work.
3. Commercial products in the OCP pipeline
• Radisys
• ADLink
• Others – roundtable; general call for inputs, for CG-OpenRack or any OCP
• **DCEngine – NFVi for Hyperscale DCs & COs**
 - Pragmatic NFV and OCP deployment initiative of carrier networks
 - Ready for full NEBs

• **Carrier-grade Environmental**
 - Seismic rack
 - Extended operating temperature
 - Certified w/ EMC, EMI and CO safety requirements
 - High capacity cooling while minimizing noise
 - -48V and 400V DC power options
Inspirited first mainly due to docs readiness; Accepted contribution to follow

- **Racks**
 - 42U DCEngine Rack
 - DCE-RACK-V2-3-MM01
 - DCE-RACK-V2-3-MM02
 - 16U DCEngine Rack
 - DCE-16U-V2-3-MM01

- **Sleds**
 - ½ Wide Compute Sled
 - DCE-CSLED-V2-3-001
 - DCE-CSLED-V2-3-002
 - Full Wide Storage Sled
 - DCE-SSLED-V2-3-001
 - DCE-SSLED-V2-3-002
• **Rack Core**
 - 600mm & 800mm wide rack options
 - Power \(\rightarrow \) 110/208VAC 3ph & 230/400VAC PDU
 - 3 PSU shelves provides 12 x 2500W PSU’s
 - Management Switches (x2)
 - Switch #1 : Connects 1G to each server BMC
 - Switch #2 : Connects 1G to each server CPU
 - Data Switches
 - 1 or 2 switches (up to 3.2 Tbps each)
 - 40G uplinks to spine switch, 10G downlink to each server
 - Option for 100G uplinks & 25G downlinks (v2.3)

• **Standard Configurations**
 - Balanced : 8x Compute (16 sleds) + 8x Storage
 - Storage : 16x Storage Shelves
DCEngine 16RU Rack Core

- **16U Rack Core**
 - 600mm wide x 1000mm deep
 - Single phase AC power
 - PSU shelf with 4 x 2500W units
 - Management Switches
 - Switch #1: Connects 1G to each server BMC
 - Data Switches
 - 1 or 2 switches (3.2Tbps each)
 - 10/40/100G uplinks, 10/25G downlinks to sleds

- **Standard Configurations**
 - 4x compute shelves + 2x storage shelves
DCEngine Sleds

• **Half width compute sled**
 - 2 x dual socket server boards per sled
 - 2 x E5-2600 v4 series CPU per server
 - 16 DIMMs per server (16GB, 32GB, 64GB)
 - 512GB SSD boot flash per server
 - 2 x 2TB SSD per server
 - 10G, n x 10G & 25G NIC options

• **Full width storage sled**
 - 1 x dual socket server board
 - 2 x E5-2600-v4 series CPU per server
 - 16 DIMMs per server (16GB, 32GB, 64GB)
 - 16 x 3.5” SAS drives (160TB)
 - 512GB boot flash, 2 x 2TB SSD
4. Panel Discussion on Telco/Operator sourcing models and ecosystem

NOTE: The panel discussion did not take place at this meeting – it was deemed to be meaty enough to have a separate session, timing TBD.
Panel discussion on Operator Sourcing Models & Ecosystem

• **Suggested Topics:**
 - Do operators want to source from a single integrator or individually from component providers – and at what level of granularity?
 - Do operators want to negotiate directly with ODMs? Silicon providers? Is price negotiation separate (more disaggregated) from procurement/deployment?
 - Expectations on margins (and cost reductions) over time – for initial POCs/deployments, small deployments, large deployments
 - Which is the bigger driver: Opex or Capex? Can a new architecture win with higher initial Capex but lower Opex and TCO?
 - What projects (and what part of network) is the best candidate for change? Are there different procurement orgs for different areas – e.g., Access/Edge/Core/Cloud?
 - Who makes technology choices – and at what level (silicon/component, boards, sleds, racks, etc.)?
 - How do tech choices translate to projects and deployment? (e.g., science projects vs. deployments)
5. Updates from community: POCs, deployments, and disaggregation
How to stand up a 600 node bare metal Mesos cluster... in two weeks

Craig Neth
Distinguished Engineer -- Architecture & Infrastructure
Verizon Labs

- PAAS services – Logging, Monitoring, “External” networking, Storage
- HW – Radisys DCEngine w/ 4x switches, 10x storage sleds, 10x compute sleds (~50 CPU sockets + ~1PB storage)
- SW – CoreOS, Cumulus, Ansible, Mesosphere, EMC ECS/ScaleIO

See details in presentation here:
OCP in CORD POCs

- **CORD** – Central Office Rearchitected as a Data center
 - ONF/ON.Lab

- **Flavors of CORD**
 - R-CORD – Residential (PON)
 - M-CORD – Mobile access (4G/5G)
 - E-CORD – Enterprise (Wavelength Services)

- All use a common infrastructure
 - Edge compute on OCP based systems

- Multiple POCs at carriers globally

- Partnerships with hardware
 - “Whitebox” Open-OLT & Micro-OLT
 - per AT&T contributed OCP specs
 - Traditional vendors like Calix
R-CORD Software to Hardware Mapping

Head Nodes

Compute Nodes

XOS
CORD 1.0

ONOS
CORD 1.0

vRouter
CORD 1.0

OpenStack
OpenStack Kilo

vSG
Pre-built Ubuntu image

vCPE
Docker image

OVS
Open Virtual Switch

vOLT
Open Stack

64bit Ubuntu

System Front

System Back

ONT, Splitter, CPE (WiFi)

Fully functional multicast in POC
R-CORD Control and Data Plane Mapping

R-CORD Functional Blocks
Running on OCP CG-Openrack Compute
R-CORD Example Rack Configs

42U 10K-Sub Micro-OLT GPON, 100GE

42U 10K-Sub Micro-OLT XGS-PON, 100GE
- Edge compute is very important in 5G
 - Very low latency doesn’t allow for backhaul of all traffic
 - Hardened OCP is key
- Several POCs in tier 1 carriers beginning
- M-CORD is still nascent but carriers are interested because it meets 5G needs
• CenturyLink used a Radisys OCP POD for MEF16 POC

• Ciena Blue Planet Service Orchestrator and two Domain Controllers from Ciena and RAD

• Original plan was to use compute and storage sleds but the compute sleds provided enough capacity that the entire POC was run on one sled

• Won best demo of show
Thank You