Lowest Latency Scalable Switching Fabric in Data Center Computing and Networking

Mohammad Akhter
Principal Architect
mohammad.akhter@idt.com
Integrated Device Technology Inc.

January 29, 2014
RapidIO Trade Association and Working Group

Data Center Computing and Networking (DCCN) Technical Working Group

http://www.rapidio.org/home

Silicon Software Systems Partner Companies

Server Storage Networking OCP
DCCN Example Use Cases

Data Center Workload = f(Use Cases)

1. Time constrained Processing
2. Diverse Workload
3. Ever-changing Traffic
4. Large Data set
5. Structured/Unstructured Data
DCCN Plan and Target

Phase 1
- Specification Development
- DCCN Hardware Platform
 ~6 Months

Phase 2
- System Software/Apps
- Submission to OCP
- Hardware Optimization

Server/Storage/Analytics **Apps**

Q3 2013 Q1 2014 Q2 2014 Q3 2014

Engineering Workshop
Leveraging RapidIO Interoperable Eco-system

Industry Leading Solution
Interoperable | Reliable | Best Latency | Fault-tolerant | Lower TCO

Axxia Communications Processor

DSP: several products In TCI64xx family

FPGA: Arria
and Stratix Family

XLS416 family Multicore Processor

Switches, Bridges & IP
CPS and Tsi Family

FPGA: Virtex 4/5/6
families

DSP, PowerQUICC & QoriQ multicore

FPGA: Virtex 4/5/6
families

Wireless Baseband Processor

DSP Oct22xx

PowerPC based processors 460GT

Network Processor Octeon 2 family

Network Processor WinPath3

Engineering Workshop
Overview

Industry standard form factor (Phase 1)
- 19" 1U rack-mount enclosure & OCP 21" shelf

High Performance Compute Agnostic Platform
- Up-to 4 Processing Modules
- x86 + ARM + DSP + FPGA + Power
- Superior FLOPS/Watt density

Work-load optimized Fabric Technology
- 20G RapidIO
- 10G Ethernet
- 6G SATA

Power and Cooling
- Back to Front Cooling
- ATX PSU, Up-to 600 W total
- Internal power supply +12V to EATX motherboard

Familiar Software Model
- Service and management console access (TCP/IP)
- Linux Software Stack (TCP/IP)
- Drivers and Data-path Library
RapidIO: *big-data* Fabric Technology

Best-in-class Switch Devices reduces TCO
- Superior performance/watt/$ switch fabric silicon
- 30G/Watt (10W Typical 48 lane switching)

Lowest Latency Fault-tolerant
- 100 nsec switching latency
- Guarantee of delivery and hardware reliability
- High Performance Messaging and DMA

Scalable and Modular Fabric Technology
- Scales to 1000s of nodes
- Layered Protocol Architecture
- Supports copper and optical interconnects

High Speed Interconnects
- Integrated NIC for ARM/PowerPC (20Gb/s)
- Low power NIC for x86 – (PCIe-RapidIO 16Gb/s)
Fabric and I/O

Work-load optimized Fabric Technology

- Computing: 4x QSFP 20G RapidIO
- Networking: 4x SFP 10G Ethernet & 2x 1G Ethernet
- Storage: 6G SATA
Computing I/O

S-RIO Low latency Switching Fabric

- Up-to 300 Gb/s on-board switching
- < 100 nsec switching latency
- Low Latency Messaging and remote DMA
- 4x QSFP (S-RIO) external connections
Networking I/O

In-chassis Storage Fabric

- 4x SFP (10GbE) external connections
- 2x RJ-45 (1GbE)
- TCP/IP and management

40 Gb/s Ethernet Uplink

GbE (Management/Control/Data)

Figure 3-4 10GbE interconnections

Figure 3-3 Ethernet topology
Storage I/O

In-chassis Storage Fabric

- 8 SATA 3.1 Connections (12G per Module interface)
- Up-to 8 hot-swap 2.5” 6G SATA Drives

Figure 3-5 SATA storage solutions interconnections

Up-to 48 Gb/s Storage bandwidth
Heterogeneous Computing

Proven Interoperable hardware and Industry support (Phase 1)

- Leverage industry standard AMC form-factor
- Optimize computation based on the workload

Prodrive AMC TI ARM + DSP
- ARM + DSP Processing
- Superior performance/watt Computing

NAT AMC Freescale QorIQ P4080 + Xilinx V6
- FPGA + DSP Acceleration
- High performance storage/compute

Concurrent AMC Intel CPU
- x86 Computation and Eco-system
- High Performance Analytics and Storage Solution
Phase 1 DCCN Example Configuration

Phase 1 Example Configuration (x86)

- 300 Gb/s RapidIO Switching
- 268.8 GFlops/1U*
 - 4-core Intel i7-3612QE 2.1 GHz Processor
- 64 GB of DDR3-1600 memory
 - 667 MHz 1333 MT/s

*core_i7-3600_m.pdf – Intel Mobile Processor Series
Phase 1 DCCN Example Configuration

Phase 1 Example Configuration (ARM+DSP)

- 300 Gb/s RapidIO Switching
- 1.84 TFLOPS DSP/1U
 - 96 DSP TMS320C66x Cores, 19.2 Gflops/Core (1.2 GHz)
- 16 ARM Cores ARM
 - Cortex-A15 Cores – 1.4 GHz
- 104 GB of DDR3 memory
 - 667 MHz 1333 MT/s
Chassis Maintenance/Boot-up/Monitoring

Maintenance
- Maintenance and management using TCP/IP over Ethernet
- One IP address fixed for management
- Status LED

Monitoring
- Current and Voltage monitoring per module
- Temperature sensors in the OMS (Baseboard)

Booting
- Linux booting from one of the on-board SSDs
- Supports S-RIO-SATA bridging using one of the Compute Modules
- TFTP, NFS, DHCP etc. services over RapidIO
Phase 1 DCCN Platform